
International Review of  
Automatic Control 

(IREACO) 
Theory and Applications 

 
 

Contents 
 
Direct and Inverse Neural Modelization of Mobile Robots 
by Ines Mahmoud, Ayachi Errachdi, Mohamed Benrejeb 

 86

A Comparative Study for the Optimization of Active Power of an Electric Power Network 
by M. Khodja, B. Yssaad, A. Chaker, M. Khiat 

 94

A Comparative Study between Dual Fuzzy Logic and Sliding Mode Control MPPT Techniques 
Applied to PV Pumping System 
by S. Abdourraziq, R. El-Bachtiri 

 100

Braking of Three Phase Induction Motors by Controlling Applied Voltage and Frequency 
Based on Particle Swarm Optimization Technique 
by Mahmoud M. Elkholy, M. A. Elhameed 

 106

Prediction of Glycemia Based on Diabetes Self-Monitoring Data 
by Marián Tárník, Vladimír Bátora, Tomáš Ludwig, Ivan Ottinger, Eva Miklovičová, Ján Murgaš 

 113

Reactive Compensation in Long Lines Through the Joint Effect of Transformer Tap 
and Shunt Compensation: a Parametric Plane Study 
by Nakka Lakshmi Srinivasa Rao, G. Govinda Rao, S. Sivanagaraju 

 120

State-Feedback Control in TCP Network: Geometric Approach 
by K. Lefrouni, R. Ellaia 

 127

Using D-STATCOM in Voltage Regulation of Future Distribution Systems 
by Y. Bot, A. Allali 

134

Dynamic Mathematical Design and Modelling of Autonomous Control of All-Terrain Vehicles 
(ATV) Using System Identification Technique Based on Pitch and Yaw Stability 
by Mohd Shahrieel Mohd Aras, Mohd Khairi Mohd Zambri, Mohd Zamzuri Ab Rashid, 
Fadilah Abdul Azis, Alias Khamis 

140

Model Identification of an Underwater Remotely Operated Vehicle 
Using System Identification Approach Based on NNPC 
by Mohd Shahrieel Mohd Aras, Shahrum Shah Abdullah, Kyairul Azmi Baharin, 
Arfah Syahida Mohd Nor, Mohd Khairi Mohd Zambri 

149

Robust Controller Design for T1DM Individualized Model: 
Gain-Scheduling Approach 
by A. Ilka, I. Ottinger , T. Ludwig, M. Tárník, V. Veselý, E. Miklovičová , J. Murgaš 

155

Challenges in Model Predictive Control Application 
for Transient Stability Improvement Using TCSC 
by S. Kulkarni, S. Wagh, N. Singh 

163

 

 

 



  
International Review of Automatic Control (I.RE.A.CO.), Vol. 8, N. 2 

 ISSN 1974-6059  March 2015 

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved 

86 

Direct and Inverse Neural Modelization of Mobile Robots 
 
 

Ines Mahmoud, Ayachi Errachdi, Mohamed Benrejeb 
 
 
Abstract – In this paper, direct and inverse models determination of a mobile robot using 
artificial neural networks are proposed. 
The effectiveness of the proposed algorithm applied to the modeling of behavior of CHAR and 
KHEPERA robots is verified by simulation experiments. The results of simulation show that the 
use of the neural networks in the determination of direct model and inverse model is very 
interesting since it enables to guarantee the time competition and the quality of the modeling. 
Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 

 y k  Process output 

 u k  Process input 
E  Error vector 
f  Unknown function of model robot 
I  ANN the input vector 
ncc  Number of nodes of hidden layer 
W  Synaptic weights of the layer 

towards the hidden layer 
Z  Synaptic weights of the layer 

towards the output layer 
s  Activation function 
  Learning rate 
  Regularization coefficient 
TDL  Tapped delay line block 
N  Number of measures 

rv  Speed of the right wheel 

lv  Speed of the left wheel 
  Angular velocity 
Yr         1 2 1T

nsyr k yr k ... yr k , ns    
output vector of the ANN 

E         1 2 1T
nse k e k ... e k , ns    

error vector 
( )ie k     i iy k yr k  error between the thi measured 

output and the èmei ANN output at time k  
W    1 and 1ncc ( nu us )

ijw R ;l ,...,ncc j ,...,nu us      

Z    1  ns ncc
ijz R ;i ,...,ns  and   l=1,…,ncc 

Ur         1 2 1T
nuur k ur k ... ur n , nu    

beeing n the output vector of the ANN 

E         1 2 ... , 1
T

nue k e k e k nu    
being the error vector  ie k     i iu k ur k  
error between the thi measured input and the 

thi ANN output 
I  ANN input vector,    1t , t nu ns    

I. Introduction 
Nowadays, research community have increased its 

interest in robots performing social tasks, consequently 
the need of studying new abilities for human-robot 
interaction and task cooperation have become important 
issues [1]. 

Robotics technology is emerging rapidly, offering new 
possibilities for automating tasks in many challenging 
applications, in domestic services, medical procedures, 
military operations, underwater missions and space 
exploration. In this latter, robotic devices are formally 
known as planetary rovers or simply rovers and they are 
aimed at conducting physical analysis of planetary 
terrains and astronomical bodies and collecting data 
about climate, wind, air pressure, temperature and other 
atmospheric phenomena surrounding the landing sites 
[2]. A mobile robot is an electromechanical system able 
of autonomous motion. Mobile robots can be classified 
into several mobility configurations as wheels number 
and type, single or multi-body structure and so on [3]. 

In [4], the exact discrete-time model of a mobile robot 
is obtained by direct integration. In [5], the authors 
present the transformation of the original kinematic 
system in chained form through an appropriate feedback. 

The obtained equations are closed-form integrable, 
thereby yielding a linear discrete-time model which 
provides exact odometric prediction and associated 
covariance [3]. 
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In [6], mathematical model is used for the design of 
advanced robot control systems. Its calculation requires 
knowledge of exact values of a robot’s physical 
parameters. It is rather difficult to obtain the data without 
disassembling a robot. One of the methods which enable 
the determination of a robot mathematical model without 
a priori knowledge of these parameters is using the 
neural networks [7]-[9]. 

The Artificial Neural Networks (ANN) is 
nonconventional methods not requiring a mathematical 
model but based on the training for the example ([10]-
[21], [37]-[39]). These ANN are well used for robot 
modeling. Indeed, the ANN are proposed for robust 
control of space robots [10], for controlling robot 
manipulators [11], for space robots based on fuzzy logic 
[12], for solving the wheel slip problem in space rover 
exploration devices [13], for moving robots with 
translational and rotational motion deployed in partially 
structured environment [14], for the Rover Mars robot 
[15], for robotic systems based on the Jordan architecture 
[16], for intelligent control of an autonomous robot [17], 
for control of a Car-Like mobile robot [18], for Control 
of a Robotic Arm [19], for Reinforcement Learning on a 
Humanoid Robot [20] and for control robot manipulator 
[21]. 

This paper presents determination method of a robot 
model using neural networks. The model strategy will be 
based on the exact discrete time model of the robot. 

The proposed ANN is a multilayer network made out 
of three layers: an input, a hidden and an output layer.  

The network is trained in off-line mode using back-
propagation supervised learning algorithm. The paper is 
organized as follows. The second Section contains the 
neural networks approach for robotic model.  

The third Section treats the simulation of two 
examples of robotic model by the ANN. The simulation 
of the inverse robotic model is seen on the forth section. 
Conclusions are presented in the last Section.  

II. Neural Networks Approach                      
for Robotic Model  

In this section, firstly, we present a robotic model 
defined in Fig. 1, secondly, we present the principle of 
the neural network for robotic model presented in Fig. 2.  

The robotic model is defined by the number nu of 
input signals  1 nuu , ,u  and the number ns of output 

variables  1 nsy , , y . A robot model can be given on 
the following form: 

 

  
     
 

1
1

1

y k ,..., y k ns ,...,u k ,
y k f

...,u k nu

  
   

   
 (1) 

 
with: 
 

         1 2 1nuu k u k u k ... u k , nu     

being the value of the input vector of the robot at time k: 
 

         1 2 1T
nsy k y k y k ... y k , ns     

 being the value of the output vector of the robot at time k. 
 

 Disturbances  

yns(k+1) 

y1(k+1) 

unu(k) 

u1(k) 
 

Robot  
 

 
Fig. 1. Inputs and outputs of studied robot model 

 
In order to find a neural direct model or a neural 

inverse one for a robot, we consider using its input-
output signals. The algorithm of training of such a ANN 
is based on the updating of the synaptic weights and on a 
fixed learning rate. 

The stages of the ANN modelling of a robot are: 
firstly to standardize and to center all the input variables, 
secondly to choose the suitable structure of a model, 
thirdly to estimate the synaptic weights, finally to 
validate the obtained model [22]-[24], [34]-[36]. 

The principle of the neural modelling of a robot is 
presented in Fig. 2. 
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Fig. 2. The general training architecture 
 

The thi  ANN output  1i ,...,ns  is given by the 
following relation: 

 

 
 

1 1
1

ncc nu us

i ij i il
l j

yr k s s w I z


 

  
   

    
   (2) 

 
Finally, the compact form can be defined as: 
 

    1 TYr k s Z S WI       (3) 

 
with: 

  1 1( nu us )
jI I R ; j ,...,nu us    
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  1

1
1

nu us
ncc

lj j
j

S WI s w I R ;l ,...,ncc






           


 
 

The Gradient Descent (GD) method is able of 
speeding up the learning process, guarantees the 
convergence of ANN weights and can simultaneously 
provide stability of the learning process [22]-[24]. 

The principle is to minimize the thi  criterion such as: 
 

 
         22

0 0

1 1
2 2

N N

i i i i
k k

J k e k y k yr k
 

       (4) 

 
By application of the GD method, we find then the 

variation of the synaptic weights of the hidden layer 
towards the output layer with  1i ,...,ns : 

 

     
 

   
1

1
nu us

il il i lj j i
j

z k z k s' w I S WI e k




 
   
 
 
  (5) 

 
where s is an activation function and s' is its derivative 

   ds v
s' v

dv
 , is a sigmoid function. The variation of 

the synaptic weights of the input layer towards the 
hidden layer with  1i ,...,ns  and  1j ,...,t  is such 
that: 
 

 

   

     
1

1lj lj

t

i lj j il i
j

w k w k

s' w I S ' WI z k e k


  

 
 
 
 


 (6) 

 
In these expressions,  1i i ,...,ns   is a positive 

constant value which represents the learning rate 
 0 1i   and  S' WI  represents Jacobean matrix of 

 S WI [33]: 
 

 
1

t

lj j
j

S ' WI diag s' w I


  
  

    


 
 
with: 

1

1

1

1

t

lj jt j
lj j tj

lj j
j
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w I







 
 
       

      
 
 





 

 
Next, simulations and comparison of the robot neural 

network models are presented. The performance of ANN 
models are evaluated by Normalized root Mean Square 
Error between the system output and the model output, 
denoted NMSE [32]: 

 
    

  

2

1

2

1

N

k
N

k

y k yr k
NMSE e

y k










 

III. Simulation Results of Direct                 
Robots Models 

In this section, two types of robot model are 
presented. The robot model (R1) [25] and (R2) [26]-[29] 
are described respectively by Eqs. (7), (8) and (12) 
equations. Where 1u  and 2u  are the inputs of the robot 
whose evolution is defined by the Eqs. (9) and (10). 

The first robot model, called in this paper CHAR is 
given by the Fig. 3. 

 

 
 

Fig. 3. CHAR Robot model 
 

The model of the 2 dimensions  2 3ne ,ns   robot 
CHAR is given by the following equations 

 

 

      
      
   
   

1

2

x t v t cos t

y t v t sin t

t u t

v t u t







 

 














 (7) 

 
The time-discrete model of this robot can be described 

by the following equations: 
 

 

 

        
        
     
     

1

2

1

1
1

1

1

x k x k v k cos k

y k y k v k sin k
R :

k k u k

v k v k u k





 

   

   


  
   

 (8) 

 
where    1 2 and u k u k  are the input signals and 

       and x k , y k k  are the output signals. 
The second robot model, called KHEPERA, is 

described Fig. 4.  
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Fig. 4. KHEPERA robot model 
 

The model of this robot with 2 dimensions 
 2 3ne ,ns   is given by the following equations: 
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r l

v t v t
x t cos t

v t v t
R : y t sin t

v t v t R
t

L





 





 



 

 








 (9) 

 
The r lv ,v

 
and   parameters are the speeds 

respectively speed the right wheel, and the left wheel and 
the angular velocity of the mobile robot. 

The time-discrete model of this robot is given by the 
following equation: 

 

 

          

          

       

1

2

1
2

1
2

2
1

2

r l

r l

r l

r

l

v k v k
x k x k T cos k

v k v k
y k y k T sin k

R : v k v k Rk k T
L

v u
v u





 


   


 

   

           
 
 

 (10) 

 
where        1 2 and r lu k v k u k v k 

 
are the input 

signals and        and x k , y k k  the output signals. 

III.1. Simulation Results of Robot CHAR (R1) 

An artificial neural network is used to simulate the 
robot CHAR (R1) which is defined by the Eq. (8). 

Fig. 5 presents the evolution of the robot output and 
the ANN output. 

Fig. 6 presents the learning error between the output 
of char robot and ANN output. For all the simulation, we 
choose: 

 

 
 1 25

ku k sin    
 

 (11) 

 

 
 2 25

ku k co s    
 

 (12) 

 
Then, for a fixed learning rate 1 0 32.  , the ANN 

output ry  follows the measured output y  with a 

1

4is 6 10eNMSE % , r  follows the measured output 

  with a 
2

4is 4 10eNMSE % , whose learning rate is 

2 0 27.   and rx  follows the measured output x  with a 

3

4is 6 10eNMSE % , whose learning rate is 3 0 42.  .  
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Fig. 5. Outputs of CHAR Robot         and y k , k x k  
and ANN 
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Fig. 6. Learning Errors between the Output of CHAR Robot 
and ANN 

III.2. Simulation Results of Robot                       
KHEPERA (R2) 

Fig. 7 presents the evolution of the process output and 
the ANN output of the system (R2) defined by the Eq. 
(10). Fig. 8 presents the learning errors between the 
output robot and ANN. For a fixed learning rate 

1 0 41.  , the ANN output  follows the measured output 

y  with a 
1

4is 5 10eNMSE  %, r  follows the 

measured output   with a 
2

4is 5 10eNMSE % , whose 

learning rate is 2 0 39.   and rx  follows the measured 

output x  with a 
3

4is 5 10eNMSE % , whose learning 

rate is 3 0 47.  . 

IV. Simulation Results of                         
Inverse Robots Models  

In this section, we present the neural inverse model 
[22]-[24], [30]. Artificial neural networks with their 
inherent learning ability can approximate the inverse 
robot function and do not require any knowledge of the 
robot model. The Gradient Descent method is here also 
used to minimize the function criteria. 

IV.1. The Inverse Model 

An inverse robot model is given by the following 
form: 

 

  
   
   

1 1 1

1 1

y k ,..., y k ns ,...,
u k f

u k ,...,u k nu
    

  
    

 (13) 

 

with 1f :
 inverse of the unknown function of robot 

model. Fig. 9 presents the principle of the neural 
modelling of the inverse robot model. 
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Fig. 7. Outputs of KHEPERA Robot         and  y k , th k x k  
and ANN 

 

 

 

 
 

Fig. 8. Learning errors between the Outputs 
of KHEPERA Robot and ANN 
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Fig. 9. The general training architecture 

IV.2. Simulation Results of Robot CHAR (R1)   

Fig. 10 presents the evolution of the process output 
and the ANN output of the robot (R1). 

Fig. 11 presents the learning error between the output 
robot and ANN.  

For a fixed learning rate 1 0 42.  , the ANN output 

1ur  follows the measured input 1u  with a 
4is 4 10eNMSE % , and 2ur  follows the measured 

input 2u  with a 4is 4 10eNMSE % , whose learning 

rate is 2 0 36.  . 
 

 

 
 

Fig. 10. Inputs of CHAR Robot    1 2 and u k u k    

and ANN output 

 
 

 
 

Fig. 11. Learning errors between the input CHAR robot 
and the output ANN 

IV.3. Simulation Results of Robot KHEPERA (R2) 

Fig. 12 presents the evolution of the process output 
and the ANN output of the robot (R2). Fig. 13 presents 
the learning errors between the output process and ANN.  

 

 
 

 
 

Fig. 12. Inputs of KHEPERA robot     1 2 and u k u k  
and ANN output 

 

 

 
 

Fig. 13. Learning Error between the Input of KHEPERA Robot 
and ANN output 
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Then, for a fixed learning rate 1 0 45.  , the ANN 
output 1ur  follows the measured input 1u  with a 

4is 4 10eNMSE %  and 2ur  follows the measured 

input 2u  with a 4is 5 10eNMSE % , whose learning 

rate is 2 0 48.  . 

V. Conclusion 
This work shows that is possible to use Artificial 

Neural Networks (ANN) in order to present a very good 
and reliable solution to the direct model and the inverse 
model of a mobile robot. This algorithm is tested for two 
mobile robots: CHAR robot and KHEPERA robot. 

The results of used ANN show that it has good and 
acceptable training error both for the direct and the 
inverse robot model. At the same time, it is important to 
say that this technique is easy to implement and to 
compute. Furthermore, it shows a good performance in 
terms of the learning speed and the reduced training 
error. 
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A Comparative Study for the Optimization of Active Power 
of an Electric Power Network 

 
 

M. Khodja1, B. Yssaad2, A. Chaker3, M. Khiat4 
 
 
Abstract – In our present article, we present a comparative study between the Hessians methods 
such as direct search methods (Nelder-Mead Simplex) and indirect research methods that are 
known as Quasi-Newtonian (BFGS, DFP, Steepest-Descent) and genetic algorithms for 
optimization of the active power by the minimization of cost and taking into account the 
constraints of equalities and inequalities. The methods were tested on an electrical network of 57 
nodes and the result that we obtained shows the advantage of AG compared to Hessian methods. 
Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
Ck The cost function of the power plant k expressed 

in DA / hour 
Pgk Active power generated at the node k 
Pchm Active power consumed at the node m 
PL Total active losses 
NG Number of nodes producers 
NC Number of nodes consumers 
rk Adjustment constant of calculation (penalty 

coefficient) 
α Reflection coefficient 
 Coefficient of expansion and value greater than 1 
γ Coefficient of contraction, 0 <  < 1 
K Represents the reduction coefficient 
λ Linear search strategy 
G Sets of constraints type inequality 
H Sets of constraints type equality 

I. Introduction 
The primary role of any company responsible for the 

production of energy is to ensure at all times and in all 
places coverage active and reactive power required by all 
users and to ensure an acceptable quality of energy 
delivered with a cost as low as possible. The problem of 
economic distribution of energy has become increasingly 
important with the emergence of energy crisis that 
requiring more expensive fuel. 

Until today, the demand for the consumption of fuel in 
power plants has become very important and therefore 
the cost of subsistence necessary for the production of 
electrical energy is becoming very higher [1]-[18]. 

The resolution of the cost function minimization task 
has become easy part especially with the advent of the 
computer allowing high speed of calculation from its 
application  to  the   power  systems   and   good  control  

reliability of this distribution in real time. So we must 
find a way to distribute the production and spread under a 
minimum possible cost. 

For this, we must take into account of everything that 
can define the cost function of each electrical plant and 
then assess the overall cost function that is non-linear and 
multivariate of all production units. 

To minimize this function, we will address in this 
paper, the optimal distribution of active power by 
Hessian methods and Genetic Algorithms then we finish 
our work by comparing these methods. [6], [10]. 

II. Mathematical Model 
We consider an electric network supplied by a set of 

power plant having each several of machines it is clear 
that at all times the sum of the active power produced by 
machines is equal to the sum of the active power 
consumed by the loads ([11]-[13]).  

The cost of fuel needed to produce electric power is a 
monotonic function of the power [6], [10]. 

So the optimization problem of the active power for 
each unit of production is linked to the minimization of 
the total production cost. Mathematically, the problem 
can be posed as follows: 

Minimize: 
 

퐹(푃 ) = 퐶 (푃 ) (1)
 

under the constraints: 
 

푃 − 푃 − 푃 = 0 

푃 ≤ 푃 ≤ 푃  

(2)
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III. Hessian Methods 
III.1. Methods of Penalties 

The four optimization methods that we will discuss 
and to use, are methods of unconstrained minimization.  

But, our problem is not devoid of these constraints. 
For this reason, we will use a method based on the 
transformation of the problem with constraints to an 
auxiliary problem without unconstrained where the 
minimum is the same as the original problem. 

The basic principle of this method is to change the 
criteria by adding a penalty function P(x), ie, it bring 
back the problem of constraint programming to a 
programming problem without constraints [6], [10]. 

The problem of nonlinear programming can be 
expressed by: 
 

푀푖푛{퐹(푥), 푥 ∈ 퐷} (3)
 
where: 

퐷 = 퐺 ∩ 퐻 (4)
 
with: 
 

퐺 = {푥  /  퐺 (푥) ≥ 0, 푖 = 1,2, … ,푛} 
 
and: 

퐻 = 푥  /  퐻 (푥) ≥ 0, 푗 = 1,2, … ,푚  

(5)

 
There are several possibilities for the choice of the 

penalty function P(x) [6], [10]. 
In our case, the penalty that is used is mixed. It 

includes terms of internal penalty represented by I (rk, Gi) 
and terms of external penalty are represented by E (rk, Gi, 
Hj). 

The objective function is written as follows: 
 

퐹 = 퐹(푥) + 푟
퐴

퐺 (푥) + 

+
1
푟

퐷 퐺 (푥) +
1
푟

퐵 퐻 (푥) 
(6)

 
along with: 
 

퐴 > 0,   푖푓  푔 (푥) ≥ 0
퐴 = 0, 푖푓  푔 (푥) < 0   

 
퐷 > 0,   푖푓  푔 (푥) < 0
퐷 = 0, 푖푓  푔 (푥) ≥ 0   

 
퐵 > 0,   푖푓  ℎ (푥) ≠ 0
퐵 = 0, 푖푓  ℎ (푥) = 0   

(7)

 
rk is an adjustment constant of calculation (penalty 

coefficient). It is chosen such that: 
 

rk > 0 and 푟 → 0 when 푘 → ∞ 

with: 
 

푟 = 푟 (0.1)  and  푟 = 0.1 (8)

III.2. Simplex Method of Nelder-Mead 

Recall that in the plan En, the points can be 
represented by polygons. To search the minimum of the 
function F(x), we select (n + 1) vectors of n dimensions.  

Thus the geometric figure formed by these values is 
called Simplex. In particular, the two-dimensional 
simplex is an equilateral triangle with three vertices. The 
objective function can be evaluated for each point 
representing one of the vertices of the polygon [6], [10]. 

A projection is made from the point giving the largest 
value of the objective function (point A) through the 
center of gravity ("centroid") of the polygon. 

The point A is removed and a new polygon called 
"reflection" is formed. The latter is composed of the 
remaining items and new point being the symmetry of A.  

The minimum values of F (x) are found from a series 
of operations such as expansion, contraction. The two-
dimensional case is illustrated by the following figure. 
[6], [10]. 

 

 
 

Fig. 1. Figure geometric called Simplex 
 

Resolution algorithm 
 
Step 1: Initialization of the vector 푥 . 
Step 2: Calculation of hx , lx  such as: 
 

퐹 푥 = 푚푎푥[퐹(푥 ), … ,퐹(푥 )] 
 

퐹(푥 ) = 푚푖푛[퐹(푥 ), … ,퐹(푥 )] 
(9)

 
Step 3: Calculation of xnh such as: 
 

퐹 푥 ≥ 퐹(푥 ) and 푥 ≠ 푥  (10)
 
Step 4: Calculation of xn + 2 is the center of gravity 
(centroid) of the (n + 1) except items 푥 : 
 

푥 =
1
푛

푥 ;     푖 ≠ ℎ (11)

 

X1 
 

X2 
 

X0 
 

A 
 Point of contraction 

 

Centroid 
 

Point of reflection
 

Point of expansion  
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Step 5: "Reflection". 
Conduct reflection xh through the centroid, 

calculating: 
 

푥 = (1 + 훼)푥 − 훼푥  (12) 
 

with α > 0. 
If (푥 ) ≤ 퐹(푥 ) < 퐹(푥 ) , replace xh by xn+3. 

 
Hence, a new geometric shape is well formed and 

why, we will apply a second thought to this new simplex. 
 
Step 6: "Expansion"  

If the reflection is achieved with great success, we will 
have a new minimum: 
 

퐹(푥 ) < 퐹(푥 ) (13) 
 

We proceed with the expansion of the vector  
(xn+3 - xn+2), we calculate: 
 

푥 = 훽푥 + (1 − 훽)푥  (14) 
 

If 퐹(푥 ) ≥ 퐹(푥 ), we replace xl by xn+4 and we 
go back to the step (3) to calculate the new centroid.  

Otherwise, we replace xl by xn+3 and we go back to the 
step (3) to calculate the new. 
 
Step 7: "Contraction" 

If the reflection is not better (unsuccessfully) where: 
 

(퐹(푥 ) ≥ 퐹 푥 ) 
 
we proceed to the contraction of the vector (xh - xn+2) 
while calculating: 
 

푥 = (1 − 훾)푥 + 훾푥  (15) 
 

If the contraction is good (F (xn+5) < F (xh)).  
This means that the result is the same as in the case 

where the reflection is reached 
 
Step 8: «Reduction» 

If 퐹(푥 ) > 퐹(푥 ), we proceeded to the reduction of 
all vectors (xi  - xl) i = 1,2,.., n, while calculating: 
 

푥 = 푥 + 퐾(푥 − 푥 ) (16) 
 

and we return to the step (2). 

III.3. Method of Davidon-Fletcher-Powel 

This is a Quasi-Newton method based on a 
generalization of Newton's formula [1]-[4]. To apply to 
our case, we are forced to bring the problem with 
constraint to the problem without constraints, by 
applying a penalty method. The principle of the D.F.P 
method is based on a generalization of the iterative 
Newton formula: 

푥 = 푥 − 휆 퐻 훻퐹(푥 ) (17)
 

To construct an approximation of the inverse of the 
Hessian, the algorithm uses the D.F.P following 
correction formula: 
 

퐻 = 퐻 +
푢 푢
푢  푦

−
퐻 푦 푦 퐻
푦   퐻 푦

 (18)

 
where: 

푢 = 푥 − 푥  
푦 = 훻퐹(푥 ) − 훻퐹(푥 ) (19)

 
Step 1: Initialization PG0, and H0 Hessian matrix is 

positive definite (we take H0 = I matrix unit), k=0. 
Step 2: Determination of the direction of movement: 

 
푑 = −퐻 훻퐹 (푃 ) (20)

 
Step 3: Calculate of: 

 
푃 = 푃 + 휆푑  (21)

 
 is chosen to minimize 퐹 (푃 ). We use it for a 

linear search strategy (line search). 
Step 4: Calculate of: 

 
푢 = 푃 − 푃  
 
푦 = 훻퐹 (푃 ) − 훻퐹 (푃 ) 

(22)

 
Step 5: Calculate of formula (18). 
Step 6: Stop the test if not, we go back to step 2. 

III.4. Method of Broiden-Fletcher-Goldfarb -                 
Shanno (B.F.G.S) 

The principle of this method is essentially a 
generalization of the iterative Newton formula (17) [3]. 

 is selected so as to minimize 푔(휆) = 퐹(푥 + 휆푑 )  
in the direction 푑 = −퐻 ∇퐹(푥 ) 

The matrix Hk is modified at each iteration by the 
B.F.G.S correction formula (18) and (19). 
 
Resolution algorithm 

Step 1: Choice of PG0 and H0, where H0 Hessian 
matrix is positive definite (we take H0 = I matrix unit). 

Step 2: Determination of the direction of movement 
formula 20.    

Step 3: Calculate of formula (21). 
Step 4: Calculate of formula (22). 
Step 5: Calculate of formula (18). 
Step 6: Stop the test if not, we go back to step 2. 

III.5. Method of Stronger Slope (Steepest Descent) 

The principle of this method is based on the steepest-
descent direction 푑 = −훻퐹(푥 ). 

The basic equation of the iterative calculation is given 
as follows: 
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푥 = 푥 − 휆 푑  (23) 
 

 is selected so as to minimize: 퐹(푥 − 휆훻퐹(푥 ). 
We used to do this, the quadratic interpolation. 

 
Resolution algorithm 

Step 1: Choose a starting point PG, k=0 
Step 2: calculation of the descent direction: 

 
푑 = −훻퐹 (푃 ) 

 
Step 3: Determination of λ to minimize the function 

퐹 (푃 + 휆 푑  with 휆 ≥ 0 using the quadratic 
interpolation) 

Step 4: Determination of the new value with formula 
(21). 

Step 5: Stop the test if not, we go back to step 2. 

IV. Genetic Algorithms 
The Genetic Algorithms (GA) are part of a family of 

stochastic methods, there are called evolutionary 
methods based on an analogy with the theory of natural 
evolution, that individuals of a population best adapted to 
their environment are more likely to survive,  recur from 
generation to generation, providing even better adapted 
descendants ([14]-[18]). 

The characteristic of these algorithms is that they are 
assessing populations of individuals encoded by a binary 
string. They use operator’s mutation and recombination 
of different types. 

The purpose of a genetic algorithm is to optimize a 
particular function in a specific search space [6], [10].  

Their research had two main objectives: 
- To highlight and rigorously explain the process of 

adaptation in natural systems.  
- Design artificial systems that have important 

properties of natural systems. 
Genetic algorithms do not use the values of the 

function studied, not its derivative, or another auxiliary 
knowledge. It is the rules of probabilistic transitions, and 
non-deterministic. 

The (GA) are evolving a population of solutions under 
the action of specific rules: elitist selection and genetic 
operators (crossing, mutation) in order to optimize a 
given behavior. In a very general level, the operation of a 
GA is then based on the following steps (Figure 2): 
1. Initializing: an initial population of N chromosomes 

is randomly selected.   
2 Evaluation: Each chromosome is decoded and 

evaluated.   
3. Selection: Creating a new population of N 

chromosomes by using an appropriate method of 
selection.   

4. Reproduction: Possibility of crossover and mutation 
(step (e)) within the new population.   

5. Back to the assessment phase as the stop condition of 
the problem is not satisfied. 
 

 
 

Fig. 2. Organization of optimization of active losses by AG 

V. Numerical Results 
The IEEE 57-bus power system [6], [10] consists of 7 

generator buses, 42 load buses, and 78 branches. The fuel 
cost in ($/hr) equations for the generator are: 

 
F1 (PG1) = 0.0776 PG1

2 + 20 PG1 + 0.0 
F2 (PG2) = 0.0100 PG2

2 + 40 PG2 + 0.0 
F3 (PG3) = 0.2500 PG3

2 + 20 PG3 + 0.0 
F6 (PG6) = 0.0100 PG6

2 + 40 PG6 + 0.0 
F8 (PG8) = 0.0222 PG8

2 + 20 PG8 + 0.0 
F9 (PG9) = 0.0100 PG9

2 + 40 PG9 + 0.0 
F12 (PG12) = 0.0323 PG12

2 +20 PG12 + 0.0 
 
and the constraints are: (the unit operating ranges in 
MW): 

00 ≤ PG1 ≤ 575.88 
00 ≤ PG2 ≤ 100 
00 ≤ PG3 ≤ 140 
00 ≤ PG6 ≤ 100 
00 ≤ PG8 ≤ 550 
00 ≤ PG9 ≤ 100 
00 ≤ PG12 ≤ 410 

 
The total load was 1250.8 MW. Transmission losses 

PL are computed using B coefficients. 
 

 Parameters values for GA 
The parameters values for GA have a number of 

population size, crossover and mutation probability, 
chromosomes length and number of generations: 
 Population size: 30; 
 Crossover probability: 0.75; 

No 

Start  

Reading data from the network 

Initialization parameter of the 
method of AG 

Optimization of active 
losses of GA 

Evaluation of 
the value of 
active losses 

by the flow of 
power 

Iter = Iter+1 

Stopping 
criterion 
satisfied 

End 

Yes  
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 Mutation probability :0.006 
 Chromosomes length: 12; 
 Number of generations: 300. 

The minimum cost and active power are presented in 
Table I. 

 
TABLE I 

MINIMUM COST AND ACTIVE POWER  

 B.F.G.S Nelder 
Mead 

Steep 
Descente D.F.P GA 

PG1
opt 

(MW) 146.2450 253.3937 148.2877 144.3520 140.3748 

PG2
opt 

(MW) 74.3554 97.4581 97.1819 82.4852 89.0269 

PG3
opt 

(MW) 50.7469 94.996 42.5168 45.7821 43.599 

PG6
opt 

(MW) 75.0718 40.5421 74.7290 78.2581 89.0269 

PG8
opt 

(MW) 508.5044 528.1941 509.5666 511.756 490.0603 

PG9
opt 

(MW) 75.3594 94.2465 75.9673 76.8546 89.0268 

PG12
opt 

(MW) 348.3431 170.6699 330.4405 339.197 337.5959 

Cost 
($/hr) 42201 44760 42190 42178 42170 

 
The results of the genetic algorithm are shown in the 

Fig. 3 below. In this figure, we see clearly the importance 
of using genetic algorithms to optimize the active power 
of electric networks while comparing with other methods 
used in this work. 

 

 
 

Fig. 3. Active power vs. cost by AG 

VI. Conclusion 
According to the results, we find that the Load flow 

method gives results with a very large cost. But, by 
optimizing the active power of an Electric Power 
Network with indirect methods of research (B.F.G.S, 
D.F.P, Steepest-Descent), we obtain more accurate 
results than the direct search method (Nelder-Mead 
simplex) .We can say that the Quasi-Newtonian BFGS 
method proves to be the best given the low value of the 
production cost and the time of calculation. 

For both Quasi-Newtonian methods (B.F.G.S and 
D.F.P), we note that the gap in the optimal power 
generated and the cost of production is almost the same, 

we find that the BFGS method has a computation time 
much better than the D.F.P method. 

We wish to emphasize that the illustration of the 
penalty method for the four methods require a choice of 
penalty coefficient (r (k)). Tests carried out for different 
values of (r (k)) clearly show the influence of the latter 
on the convergence of methods. This excludes the 
recommendation of a single value (r (k)) for different 
methods and different networks. 

We have studied and applied the method of GA with a 
well appropriate and accurate model to calculate the 
optimal distribution of active power. For this purpose, we 
can say that the genetic algorithm method is more robust 
and efficient for solving the multivariable functions 
while comparing with the use of hessians method. 

The application of AG led us to conclude that the cost 
and losses in standards and are better than those found by 
Hessian methods and there are very encouraging in the 
field of optimization. The Genetic algorithms seem to be 
very effective and are an important research topic in the 
context of optimizing the management of electrical 
networks. 
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A Comparative Study between Dual Fuzzy Logic and Sliding Mode 
Control MPPT Techniques Applied to PV Pumping System 

 
 

S. Abdourraziq, R. El-Bachtiri 
 
 
Abstract – The aim of this paper is to present a comparison investigation of the performance 
characteristics of two different Maximum Power Point Tracking (MPPT) techniques applied to 
photovoltaic (PV) pumping system. A dual fuzzy logic control technique and slide mode control 
command are developed and simulated by Matlab/Simulnk environment, the comparison is done to 
identifying the advantages and drawbacks of each technique for different values of radiation and 
temperature. The studied system consists of photovoltaic panel, dc-dc boost converter, a group 
motor-pump, and a storage tank. Simulation results obtained show the variation of the accuracy 
and speed response time with variation of condition atmospheric for each method, and verify their 
influence in the efficiency of the PV pumping system. Copyright © 2015 Praise Worthy Prize S.r.l. 
- All rights reserved. 
 
Keywords: PV Pumping System, MPPT, Dual Fuzzy Logic Control (DFLC), Slide Mode Control 

(SMC), Motor-Pump 
 
 

I. Introduction 
To extract water from surface or underground, it is 

necessary to use pumps. The pumps need a source to be 
entrained. 

Solar energy using as source to pump water has 
become one of the most promising applications of 
photovoltaic (PV) standalone systems, especially in rural 
areas that have a significant amount of solar radiation 
and do not have access to national grids. Depending on 
the state of the place, pumping water can be used in 
many applications such as domestic use, water for 
irrigation and village water supplies [1][2]. 

Different types of motors and pumps are available on 
the PV pumping market. Several studies have been done 
on the choice of the drive system, which suits PV source.  

The most commonly pump used are: centrifugal or 
volumetric pump, depending on the state of the place. 
Single-stage centrifugal pumps are frequently used in PV 
shallow water pumping for low head applications. For 
PV subterranean water pumping and surface water 
pumping with higher heads, multistage centrifugal pumps 
are more suitable. Other types of pumps are used such as 
progressive cavity pumps [3], and piston pumps [4]. 

The PMDC motor and induction motor are the most 
type motor used in PV pumping system application. The 
choice of motor depends on several factors: the 
requirements of the size, efficiency, price, reliability and 
availability. 

The power conditioning has a role to optimize the 
transferred energy between the PV generator and the 
motor-pump set. Power conditioning can be a DC/ AC 
inverter for an AC electric motor or a DC/DC inverter for 
a DC electric motor. 

The Maximum Power Point Tracking (MPPT) 
command is a functional component of each PV systems; 
it allows to search the optimum operating point of the PV 
generator, for different weather conditions. In the 
literature, many techniques of maximum power point 
tracking (MPPT) have been proposed, the incremental 
conductance method (IncCond) [5], fraction of the short- 
circuit current [6], fraction circuit voltage open [6], fuzzy 
logic control [7] and other MPPT methods [8]-[9]. 

These methods vary in their complexity, reliability, 
cost, and their adaptation with variation of radiation and 
temperature. The improvement of MPPT algorithm 
optimize the efficiency of the PV panel, which aims to 
the maximization of the global efficiency, will lead 
consequently to maximize the drive speed and the water 
discharge rate of the coupled pump. In this paper, a 
simple and efficient photovoltaic water pumping system 
is presented. We proposed a comparative study between 
two different MPPT commands is done. The studied 
methods are dual fuzzy logic control [10]-[11] and slide 
mode control command [12], [17], [18], the choice of 
these methods is based on their robustness, their 
efficiency compared to traditional techniques, and low 
cost. The comparison allows to show the advantages and 
drawbacks of each method, and their influence in the 
efficiency of PV pumping system studied. The proposed 
MPPT techniques was tested in MATLAB/SIMULINK 
environment, under changed value of irradiance and 
temperature, to define the accuracy and speed response 
time of each method. The obtained results was compared 
and resumed in tables. The studied system consists of the 
PV array, the DC-DC boost converter, and the DC 
motor-pump. The block diagram of the PV pumping 
system proposed is shown in Fig. 1. 
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Fig 1. General configuration of a photovoltaic pumping system 

II. PV Panel Model 
PV panel is a p-n junction semiconductor, which 

converts light into electricity. In the literature, there are 
several mathematical models which describe the I − V 
characteristic [13]. The difference between these models 
is the procedure of the calculation, the intervening 
parameters number to compute the I –V characteristic 
and results accuracy. The equivalent circuit of a PV 
module is shown in Fig. 2. Based on this circuit model, 
the behavior of the PV array may be described by Eq. 
(4): 
 ph d pI I I I    (1) 
 
with: 
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where: 
V is the PV output voltage, I is the PV output current, Iph 
is the photocurrent, I0 is the saturation current, Rs is the 
series resistance, Rp is the shunt resistance, q is the 
electronic charge, n is the diode factor, Ko is the 
Boltzmann’s constant, T is the junction temperature. 

The output simulation results of the P-V and I-V 
curves of the PV cell for different values of radiation (G 
= 1000, 800, 600, 400 W/m²) are presented in Figs. 3(a), 
(b). 

 

 
 

Fig. 2. Equivalent circuit of PV cell 

 
(a) 

 

 
(b) 

 
Figs. 3. Output characteristics of PV array (a) P-V, (b) I-V 

III. Maximum Power Point Tracking 
(MPPT) Technique 

In order to drive the load at the maximum supplied 
power of PV panel, a dc-dc boost converter is used for a 
better matching PV generator and motor-pump load 
around the optimal power is needed (Fig. 4).  

The dc-dc boost converter [14] is an electronic power 
converter whose output voltage is higher than the input 
voltage. The expression of the output voltage depending 
on the input voltage and duty cycle is expressed as 
follow: 

 

1
1o pvV V





 (5) 

 

 
 

Fig. 4. Model of coupling PV generator with motor-pump load 
and MPPT command 

 
The variation of duty cycle enables the PV generator 

to operate at the desired value. We note that the 
adaptation is performed when the output voltage Vpv and 
output current Ipv are equal to optimal voltage and current 
respectively.  

In order to improve the efficiency, it is necessary to 
apply excellent MPPT technique to track the MPP of 
photovoltaic cell more stably and accurately. 
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The traditional MPPT techniques used in the 
literature, to extract MPP can’t satisfy both performance 
requirements of fast dynamic response and good 
accuracy during the steady state at the same time. 

The compared methods studied in this paper are 
characterized by a technique of search of MPP, with a 
variable step size allowing a good tracking of the MPP 
when atmospheric conditions change. A detailed 
description of each proposed method is shown in 
chapters bellow.  

III.1. Dual Fuzzy Logic Controller MPPT Command 

The fuzzy logic allows to define control laws of any 
process starting from a linguistic description of the 
control strategy to be adopted. The fuzzy logic controller 
technique has been used for tracking the MPP of PV 
systems since it has the advantages such as it is robust, 
relatively, not needing an accurate mathematical model, 
and does not require the knowledge of an exact model.  

The dual fuzzy logic controller studied [10] can track 
the MPP of photovoltaic panel accurately and 
simultaneously with variation of weather conditions. 
When the operating point is far away from the MPP, the 
controller choose the Far tuning fuzzy control, the 
operating point track rapidly the MPP. 

When the operating point is near from the MPP, the 
controller choose the near tuning mode control, the 
output power of the PV array is stable and more accurate. 
In other way, the two FLC intervene in different time.  

The description of the principle of the method is 
presented Fig. 5. 

The power is calculated from photovoltaic voltage and 
current: 

P = Vpv·Ipv (6)
 

The dual mode control is categorized into three 
different sections. The principal elements of the DFLC 
systems are shown in Fig. 5. The input variables of the 
DFLC are (ΔP) and (ΔI) the variation in PV power and 
the variation of PV current, respectively; moreover the 
output of the DFLC is the variable step-size (ΔD) of the 
P&O algorithm. 

The advantage of this method that the step-size using 
to track MPP are not fixed, it depends on positioning of 
optimum output power, under different values of 
radiation and temperature. 

Which improve greatly the precision of search and the 
speed of response time. 

III.2. Sliding Mode Control MPPT Command 

In the literature, different papers are developed the 
sliding mode control technique [11]-[12], [17] to track 
the MPP of the PV generator. This method presents the 
advantages of robustness, simplicity and good 
performance. The control circuit adjusts the duty cycle of 
the switch with the different variation of radiation and 
temperature to track the MPP of the PV panel. 

 
 

Fig. 5. Principle of FLC dual Control [10] 
 

The traditional sliding mode control method use a 
limited surface to search the MPP, which causes a great 
oscillations and slow response time when atmospheric 
conditions change. The good choice of the surface can 
improve significantly the accuracy of tracking of MPP, 
and convergence time. We introduce the concept of the 
approaching control. 

We select the sliding surface as: 
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The sliding surface is given by the following equation: 

 

 

pv
pv pv

pv

dI
I V

dV
    (10) 

 
The present paper develops a novel strategy of sliding 

mode control command, to track the MPP with more 
precision and a short response time. We choice from the 
curve of power-voltage two surfaces: large surface σL 
and small surface σS (Fig. 6). 

The principle of search of the MPP is: if the reference 
power is far from the MPP of the PV generator, so we are 
in the large surface, the required of Pref is maximized to 
the MPP, which will be reached in few steps. Thus, the 
track of the maximum power point is accelerated. 
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Fig. 6. The division of surface in the curve following a 
sudden change of insolation 

 
Else if the Pref is near to MPP, we are in the small 

surface, the required update of Pref is minimized with a 
big accuracy of searching. The equation of Pref  is: 
 

 
ref

P
P N

V





 (11) 

 
when Pref  is far from MPP. The proposed technique 
choose large surface, so the equations become: 

The equivalent duty cycle must lies in 0.1<αeq<0.9 
The real controls signal α is proposed as: 

 

  0 9        if    0 9eq. k .      (12) 
 

        if    0 1 0 9eq eqk . k .          (13) 
 

  0 1      if    0 9eq. k .      (14) 
 
when Pref is near from MPP. The proposed technique 
choose small surface, so the equations become: 

The equivalent duty cycle must lies in 0.6<αeq <0.8 
The real controls signal α is proposed as [18]: 

 

  0 8                       if    0 8eq. k .      (15) 
 

               if    0 6 0 8eq eqk . k .          (16) 
 

  0 8               if    0 8eq. k .      (17) 
 

The proposed equation of the reference power allows 
calculating of the novel power simultaneously with 
variation of insolation and temperature. It determines the 
position of the power at each moment, which facilities 
the task of tracking MPP. The simulation results of the 
proposed SMC technique compared to dual fuzzy logic 
command are presented in the next section; they show 
clearly the efficiency of each method with PV pumping 
system. 

IV. Simulation Results 
In order to evaluate the efficiency of each method, 

their advantages and drawbacks, and its influence on the 

reliability of the PV pumping system entrained by DC 
motor and coupled to a centrifugal pump, a simulation is 
realized in Matlab/Simulink environment, and the 
different results obtained are shown in the figures bellow 

The PV generator source used is Shell SP75, it has the 
characteristics recorded in Table I. also, the parametric of 
the dc-dc Boost converter employed have been noted in 
Table I. The parameters of boost interface used are 
shown in Table II. 

 
TABLE I 

ELECTRICAL PARAMETERS OF SES96M 
Maximum power(Pmpp) 240 W 
Voltage at MPP(Vmpp) 48.5 V 
Current at MPP(Impp) 4.95 A 

Open circuit voltage(Voc) 58.2 V 
Short circuit current(Isc) 5.55 A 

 
TABLE II 

PARAMETERS BOOST CONVERTER 
C1 2mF 
C2 800uF 
L 10mH 
R 100Ω 

VI.1. Simulation Results with Fixed Radiation                 
and Temperature 

The output characteristics of the power and current of 
each method at G=1000w/m² and T =25°C are presented 
in figures below. 

 

 
 

Fig. 7. Caracteristics of the output power of PV panel 
with DFLC and SMC 

 

 
 

Fig. 8. Caracteristics of the output current of PV panel 
with DFLC and SMC 

 
The Figs. 7, 8 show the output power and current of 

the PV panel, using two different MPPT techniques. We 
note that the dual fuzzy logic control method presented in 
red color has a perturbation at the start of the system till 
0.2s, and its stabilize after with a good accuracy. 

The sliding mode control expressed in blue color, has 
a speed response time, but a great oscillations compared 
to DFLC. 
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We can deduce that DFLC is characterized by a slow 
response time but a good accuracy. The SMC command 
has a problem of oscillation, which decreases the quality 
of tracking, but it presents a speed response time. 

The output characteristics with variable values of 
temperature and radiation are presented in chapter bellow 

VI.2. Simulation Results for Variable Radiation                     
and Temperature 

In this section, we present a comparison between 
proposed DFLC and SMC technique applied to PV water 
pumping system, at variable values of radiation (G=500, 
1000, 600W/m²), and temperature (T=20, 30, 25°C). 

The difference between two methods and the influence 
of proposed algorithm on system behavior is presented 
for different weather conditions in following figures. 

 

 
(a) 

 

 
(b) 

 
Figs. 9. The output behaviour of the power of the PV panel using DFLC 

and SMC for (a) variable radiation, (b) variable temperature 
 
The simulation results for output power for irradiance 

changed from 500W/m², to 1000 W/m² at 0.3s, and from 
1000 to 800W/m2 at 0.6 are shown in Fig. 9(a). 

We note that with each start, we obtain lateness with 
oscillation, but the curve stabilizes after. The DFLC 
presents a good accuracy with slow speed time. In the 
beginning, the output power don’t stabilize till 0.15s, the 
same thing when the radiation changes to 1000W/m², and 
600W/m². We can remark that the systems used DFLC 
MPPT technique are slow, but with good accuracy of 
searching of the MPP (Fig. 9(a)).  

On the other side, the SMC MPPT method presents a 
speed response time, but a considerable oscillations and 
perturbations, which influence in the system stability.  

The blue curve shows clearly the considerable 
oscillation compared to DFLC command. Fig. 9(b) 
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from 30°C to 25°C at 0.6 are shown in Fig. 9(b). In each 
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The output current of the PV panel for variable values 
of radiation at 25°C is shown in Fig. 10. 

 

 
 

Fig. 10. The output characteristic of the current of the PV panel 
using DFLC and SMC for variable radiation 

 
The response performance of each method with fixed 

radiation applied to PV water pumping system is 
resumed in Table III. 

 
TABLE III 

COMPARISON BETWEEN THE STUDIED MPPT 
FOR HIGH IRRADIATION (1000w/m², T=25°C) 

MPPT Response time Ripple (A) Mean value 
(240W) 

Novel SMC 0.06s 0.8A 237.25 
DFLC 0.16s 0.3A 239.82W 

 
The comparison of the performance of each method 

apllied to PV pumping system at low temperature 
(T=20°C and G=1000W/m²) is presented in table below. 

 
TABLE IV 

COMPARISON BETWEEN THE STUDIED MPPT 
FOR LOW TEMPERATURE (1000w/m², T=20°C) 

MPPT Response 
time 

Ripple 
(W) 

Mean value 
(244W) 

Novel SMC 0.04s 0.5A 242.42W 
DFLC 0.16s 0.29A 244.2W 

 
The tables show the differnce of response time, ripple 

and the value of the output power. For comparison, the 
values explain clearly the diference between the studied 
techniques. 

The optimizationand the good choice of the MPPT 
technique allows  to the maximization of the global 
efficiency, will lead consequently to maximize the drive 
speed and the water discharge rate of the coupled 
centrifugal pump. 

 

 
 

Fig. 11. Output speed of the DC motor driven by PV generator 
using DFLC and SMC MPPT techniques 
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Braking of Three Phase Induction Motors by Controlling 
Applied Voltage and Frequency Based on Particle 

Swarm Optimization Technique 
 
 

Mahmoud M. Elkholy, M. A. Elhameed 
 
 
Abstract – Braking of three phase induction motors is required in many industrial applications. 
This paper introduces braking of three phase induction motors using particle swarm optimization 
(PSO) technique. The objective is to determine the optimum values of the applied voltage and 
frequency during braking to stop the motor in a certain time with minimum braking energy losses 
to limit any excessive thermal heating. The proposed technique is important and more useful in 
applications of repeated braking cycles. The results are compared with that obtained using 
plugging braking method and it's found that the proposed technique gives lower braking energy 
and shorter braking time. The braking energy losses with the proposed method are about 20% of 
the plugging braking energy losses with the same braking time. The proposed method determines 
the variation of optimal values of applied voltage and frequency to have a certain braking time of 
three phase induction motor at a certain load torque with minimum braking energy losses. The 
characteristics of the motor are simulated using SIMULINK/MATLAB. Copyright © 2015 Praise 
Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: Braking, Induction Motor, Plugging, PSO, Regenerative Braking 
 
 

Nomenclature 
푢  d-axis stator voltage 
푢  q-axis stator voltage 
푖  d-axis stator current 
푖  q-axis stator current 
푖  d-axis rotor current 
푖  q-axis rotor current 
휆  d-axis component of stator flux linkage 
휆  q-axis component of stator flux linkage 
휆  d-axis component of rotor flux linkage 
휆  q-axis component of rotor flux linkage 
푅  Resistance of stator winding 
푅  Resistance of rotor winding referred to stator 
퐿  Self inductance of stator winding 
퐿  Self inductance of rotor winding 
푀 Mutual inductance between stator and rotor 

windings 
휃 Rotor displacement 
푇  Load torque 
퐽 Moment of inertia kg m2 
퐵 Rotor friction 
푝 Number of poles 
푝  Motor copper losses 
푝  Motor iron losses 
퐼  Stator phase current 
퐼  Rotor phase current referred to stator 
푉 Stator phase voltage 
푅  Core loss resistance 

I. Introduction 
Braking of three phase induction motors is an 

important issue especially in industrial applications that 
require multi stop in a definite time. Braking can be 
mechanical through friction or electrical. Mechanical 
braking results in waste of rotor stored kinetic energy and 
excessive heat. 

Electrical braking has many methods such as 
plugging, regenerative and dynamic braking. Plugging 
depends on reversing the direction of the rotating field by 
changing the supply phase sequence, this results in an 
opposing torque that stops the motor. 

Plugging results in high currents, serious overheating 
and the motor must be disconnected when the speed 
reaches zero otherwise it will revolve in the opposite 
direction. If the motor speed is greater than synchronous 
speed, the slip is negative. In this case the motor acts as a 
generator retuning the energy to supply, this is called 
regenerative braking.  

Dynamic braking is achieved by disconnecting the 
supply and connecting external resistances across motor 
terminals, in this case rotor kinetic energy is converted 
into heat losses. Other braking methods can also be used 
such as DC injection, zero sequence, magnetic and 
capacitor self-excitation braking. 

The issue of induction motor braking is discussed in 
literature, for example [1] deals with sensorless vector 
control of pulse width-modulated inverter-fed induction 
motor drives equipped with a three-phase diode rectifier.  
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An electronically controlled braking resistor across the 
dc link is not used, but instead, the power regenerated 
during braking is dissipated in the motor. In [2] braking 
of three phase induction motor is done using combination 
of two or more conventional methods, it is found that 
effective braking is obtained by applying different 
methods at different speed ranges, but this will result in 
complex circuit for braking. Braking torque in non-
regenerative AC drives without the need of additional 
power circuits is discussed in [3]. In [4] conventional 
methods of braking, branch elimination method in 
conjunction with conventional tensor technique is used to 
establish a digital computer program to simulate the 
system. In [5], [6] two braking methods are examined to 
reduce motor current, one based on the injection of an 
AC voltage to the rotor winding during braking. 

The injected voltage must have the same frequency, 
same phase shift and opposite in direction to the rotor 
induced voltage. 

The second method depends on discrete variable 
frequency control using three phase inverter, AC 
thyristors monitored by a microcontroller PIC. Reducing 
energy loss during braking is examined by using direct 
torque control in [7], the method is investigated with 
constant and traction load toques. 

Optimization of braking energy is a nonlinear 
problem; it is suitable to examine heuristic optimization 
techniques to solve this problem. PSO is used extensively 
to design, control and operate three phase induction 
motor [8]-[11]. The rule of the PSO in this paper is to 
find the suitable variation of voltage and frequency 
during a certain braking period to minimize energy losses 
in the motor, this will result in less heat and allow for 
frequent braking in a certain time. 

II. Mathematical Model 
The voltage equations of three phase squirrel cage 

induction motor in d-q frame are [12], [16]: 
 

푢 = 푖 푅 +
푑
푑푡
휆 − 휃̇ 휆  (1) 

  

푢 = 푖 푅 +
푑
푑푡
휆 + 휃̇ 휆  (2) 

  

0 = 푖 푅 +
푑
푑푡
휆 − 휃 ̇ 휆  (3) 

  

0 = 푖 푅 +
푑
푑푡
휆 + 휃 ̇ 휆  (4) 

 
The flux linkages are defined by: 

 
휆 = 퐿 푖 + 푀푖  (5)

 
휆 = 퐿 푖 + 푀푖  (6)

 
휆 = 퐿 푖 + 푀푖  (7)

휆 = 퐿 푖 + 푀푖  (8)
 

The electromagnetic torque equation is: 
 

푇 =
3
2
푝
2
푀
퐿

(푖 휆 − 푖 휆 ) (9)

 
The mechanical equation is: 
 

푇 − 푇 = 퐽
푑휃̇
푑푡

+ 퐵휃̇ (10)

 
The model of three phase squirrel cage induction 

motor is developed by SIMULINK /MATLAB to solve 
the above nonlinear equations and to study the dynamic 
performance characteristics of the motor. 

The SIMULINK dynamic model of the motor is 
shown in Fig. 1. Energy lost in the motor is defined as: 
 

푤 = (푝 + 푝 )푑푡 (11)

 
푝 = 3퐼 푅 + 3퐼 푅  (12)

 

푝 =
3푉
푅

 (13)

 
The proposed method to optimize braking energy 

losses depends on changing motor input voltage and 
frequency according to the equations: 
 

푓 = 퐾 − 퐾 푡 (14)
 

푉 = 퐾 푓 (15)
 
where; Kf1, Kf2 and Kv are constants. The ratio of voltage 
to frequency 퐾  must be limited to prevent motor 
saturation. 

Fig. 2 shows the SIMULINK model with these 
variable voltage and frequency. 

III. Optimum Voltage and Frequency 
Variations Using PSO 

In this part PSO is used to determine the constants Kv, 
Kf1 and Kf2 in Eqs. (14) and (15). The objective function 
is to minimize equation (11) at certain braking time with 
the following inequality constraint to prevent saturation 
in the motor: 

 
푉
푓

< 5 

 
Fig. 3 shows the flow chart of PSO operation, for a 

certain load torque a swarm of 24 agents is initialized, for 
each agent the motor dynamic model is operated, and the 
objective function is evaluated. 
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Fig. 1. Simulink Model of three phase induction motor 
 

Agents are moved to their new position according to 
their velocities, their best position and the best position 
of the swarm. Agents velocity in swarm is updated 
according to the equation [13]: 
 

푣 = 푤푣 + 푐 푟푎푛푑 × 푝푏푒푠푡 − 푠 + 
+푐 푟푎푛푑 × 푔푏푒푠푡 − 푠  

(16) 

 
where vi

k is velocity of agent i at iteration k, w is 
weighting function, cj is weighting coefficients, rand is 
random number between 0 and 1, si

k is current position of 
agent i at iteration k, pbesti is best position of agent i, and 
gbest is best position of the swarm. The weighting 
function w is given by: 
 

푤 = 푤 −
푤 − 푤
푖푡푒푟

× 푖푡푒푟 (17) 

 
where wmax is initial weight, wmin is final weight, itermax is 
maximum iteration number, and iter is current iteration 
number. 

According to Shi and Eberhart [14], [15], the 
following parameters are appropriate and the values do 
not depend on problems: 
 

ci = 2, wmax = 0.9 and wmin = 0.4 (18) 
 

Maximum number of iteration is itermax = 50. This 
process is repeated for a braking time of 4, 4.5 and 5 s at 
load torque of 0.5 N m. 

IV. Results and Discussion 
Simulation has been carried out using 

SIMULINK/MATLAB for 220/380 V, 1.1 kW, 50 Hz 
three phase induction motor having the following 
parameters: 

 
푅  = 5.15 Ω  푅  = 3.75 Ω 

퐿  =0.5887 H  퐿   =0.5887 H 
푀=0.5568 H  푝    =2 

 
In this section two groups of results are presented, the 

first one is the performance characteristics of the motor 
which is braked using conventional plugging method, by 
reversing two phases of the motor. 

In the second case the motor is braked with the 
proposed method by controlling the applied voltage and 
frequency to stop the motor within certain time with 
minimum energy losses. All results are taken at load 
torque of 0.5 N m and the motor runs in motoring mode 
with rated voltage and frequency from 0 sec to 6 s, after 
that the motor is in braking mode. 

IV.1. Plugging Method 

The braking time with plugging is 5 s as shown in Fig. 
4. The developed torque is reversed during plugging and 
reducing the motor speed in the same direction of load 
torque as shown in Fig. 5. Therefore, the speed is 
decreased from load speed to zero and to prevent rotation 
in reverse direction the applied voltage is removed. 
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Fig. 2. SIMULINK system scheme 
 

 
 

Fig. 3. Flow Chart of PSO 
 

The motor current during plugging is higher than the 
starting current as shown in Fig. 6 because the motor slip 
during plugging is higher than 1 and hence the motor 
impedance is lower than that during stating. So the motor 
losses during plugging are higher than that during 
starting as shown in Fig. 7. Fig. 8 shows the variation of 
input and output powers with time. 

The motor draws power from supply during motoring 
and plugging modes. The output power during plugging 
is reversed due to the reverse of torque direction. 

During motoring mode the difference between input 
and output powers is converted into losses but during 
plugging both of input power and output power are 
converted into losses. Therefore the plugging losses are 
high. Fig. 9 shows the variation of energy losses during 
one cycle of operation of starting, running and braking.  

The energy losses during braking with plugging are 
14548 Joule within braking time of 5 s and this energy 
losses are converted into heat. 

 

 
 

Fig. 4. Variation of motor speed with time (plugging method) 

IV.2. Proposed Method 

The performance characteristics of three phase 
induction motor with the proposed method of controlling 
both applied voltage and frequency to have minimum 
braking energy losses at certain braking time with PSO 
are shown in Figs. 10 to 17. Fig. 10 shows the variation 
of motor speed with time at different braking time of 4, 
4.5 and 5 s using the proposed method. The braking 
developed torque with lower braking time is higher than 
that of higher braking time as shown in Fig. 11. 
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Fig. 5. Variation of developed torque with time (plugging method) 
 

 
 

Fig. 6. Variation of motor phase current with time 
(plugging method) 

 

 
 

Fig. 7. Variation of total motor losses with time 
(plugging method) 

 
Motor current in braking mode is lower than starting 

current and also lower than plugging braking current as 
shown in Fig. 12. Therefore, the motor losses and energy 
losses are reduced compared with of plugging method as 
shown in Fig. 13 and Fig. 14. The braking energy losses 
are 2884 Joule with braking time of 5 s, 2734 Joule with 
braking time of 4.5 s and 2944 Joule with braking time of 
4 s. With the same braking time of 5 s, the braking 

energy losses with the proposed method are about 19.8 % 
of braking energy losses with plugging method. 
Therefore, the proposed method is more useful method to 
save energy for multi-braking applications. 

With the proposed method, the motor can be braked 
with time shorter than plugging braking time with lower 
braking energy losses. In Fig. 15, the input power is the 
electrical power from supply and output power is the 
mechanical power.  
 

 
 

Fig. 8. Variation of input and output powers with time  
(plugging method) 

 

 
 

Fig. 9. Variation of energy losses with time (plugging method) 
 

 
 

Fig. 10. Variation of motor speed with time (Proposed method) 
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The output power is reversed in braking mode because 
the developed torque reversed. 

The input power during braking with the proposed 
method is returned to supply from motor during a part of 
braking period. 

The optimum values of applied voltage and frequency 
to have certain braking time with minimum braking 
energy losses are obtained using PSO technique. The 
results and are shown in Fig. 16 and Fig. 17. 

 

 
 

Fig. 11. Variation of developed torque with time (Proposed method) 
 

 
 

Fig. 12. Variation of motor phase current with time (Proposed method) 
 

 
 

Fig. 13. Variation of total motor losses with time (Proposed method) 
 

 
 

Fig. 14. Variation of energy losses with time (Proposed method) 
 

 
 

Fig. 15. Variation of input and output powers 
with time (Proposed method) 

 

 
 

Fig. 16. Variation of optimum values of stator frequency 
with time (Proposed method) 

V. Conclusion 
Using the proposed braking method, three phase 

induction motors can be braked at a given braking time 
with minimum braking energy losses. The proposed 
method determines the optimum values of applied 
voltage and frequency to stop the motor within certain 
time with minimum braking energy losses by particle 
swarm optimization technique. 
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Fig. 17. Variation of optimum values of motor phase voltage 
with time (Proposed method) 

 
The braking energy losses with the proposed method 

are about 20 % of plugging braking energy so that the 
proposed method is more useful for multi braking 
applications without any excessive overheating for the 
motor. 
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Prediction of Glycemia Based on Diabetes Self-Monitoring Data 
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Eva Miklovičová, Ján Murgaš 

 
 
Abstract – This paper deals with the application of self-monitoring diabetes data that are 
supplemented by the continuous glucose monitoring for the blood glucose concentration 
prediction. The short-term predictor is designed and evaluated on three different datasets. A 
diabetes-specific metrics is used to evaluate the predictors. Standard Least Squares identification 
as well as an alternative identification method with constraints is considered. Copyright © 2015 
Praise Worthy Prize S.r.l. - All rights reserved. 
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I. Introduction 
The self-monitoring of glycemia plays an important 

role in treatment of Type 1 Diabetes Mellitus (T1DM). 
Typical blood glucose level self-monitoring is based on 
several fingerstick measurements of glucose samples. 
Routinely three or four glucometer measurements are 
made during the day. Such information serves only as a 
basic monitoring. In case of the insulin therapy 
adjustment, more frequent measurements are necessary 
to capture the glycemia evolution during the day. 
Typically eight or more fingerstick measurements are 
considered in these cases. In the recent decade systems 
for continuous glucose monitoring (CGM) have become 
commercially available. CGM provides information on 
the glucose concentration every 5 minutes, i.e. up to 288 
measurements per day. In practice this means that a real 
time information on glucose concentration is available. 
An experienced diabetic patient can intuitively predict 
the future glycemic trend. The more complex information 
provided by the CGM can lead to better patient decisions.  

Therefore it can improve the treatment of diabetes and 
prevent acute and long-term diabetic complications. 

In this paper we address the use of routine diabetes 
self- monitoring data supplemented with the continuous 
glucose monitoring for the prediction of glycemia. 
Methods of the classical system identification and 
prediction [1] are used to design a blood glucose 
predictor. Prediction of the glucose concentration from 
the CGM data has been investigated previously [2]. 

In the recent years several blood glucose predictors 
have been proposed [2]-[7]. In general acceptable 
predictions are obtained for a prediction horizon up to 60 
minutes. Therefore, the glucose predictors are often 
referred as a short-term predictors. A prediction horizon 
between 20 and 30 minutes is usually used for a 
predictive hypoglycemia alert. If the hypoglycemia is 
predicted ahead in time one can take an action to prevent 
it or mitigate its effects. 

A longer prediction horizon can also be helpful in 
short-term decision-making. The predictions may be also 
taken into account in the planning of the future insulin 
delivery and carbohydrate intake. 

In such case the predictor needs the information on 
future (planned) insulin and carbohydrate intake. [3], [5] 
and [6] present suitable predictors. In [5] part of the 
prediction model is fixed and the parameters are set to 
the average values known from the clinical studies. 
Particularly in [5] the slow- acting insulin has been 
modeled by Berger and Rodbard [8], and the fast-acting 
insulin has been modeled by the second order 
compartmental model. 

The carbohydrate absorption has been modeled by 
compartmental models distinguishing the fast and slow 
carbohydrates. In [3] the carbohydrate absorption has 
been modeled using Chiara Dalla Man model [9]. The 
insulin concentration data are directly available, therefore 
modeling is unnecessary. The above-mentioned 
prediction models identify the remaining part as a black 
box model. In [6] whole model is considered as the 
black-box model. 

Some predictors utilize only the glucose time series 
data [2], [4], [10]. These predictors use only the glucose 
signal, no information on insulin and carbohydrates is 
used. Therefore, planned insulin dose or carbohydrate 
intake does not affect the predicted glucose evolution. 

Consequently, the decision support in this respect is 
limited. In this paper the aim of the prediction is to 
achieve a better decision on insulin dose for the planned 
carbohydrate intake. The standard diabetes self-
monitoring data are considered in the prediction as 
described in Section II. 

II. Self-monitoring Data and CGM 
The purpose of this work is to study the possibilities 

of glycemia prediction based on the routine self-
monitoring data not the data obtained in clinical studies. 
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We use data provided by one T1DM subject. 
However, three data acquisition sessions have been 
carried out in three different months in 2013, i.e. March, 
April and May. These data sets are considered as separate 
data sets. 

The data acquisition has been based on the insulin 
pump which the subject has been using. A commercially 
available CGM has been augmented to the insulin pump. 
The data acquisition considers four basic signals, namely 
the glucose concentration, the basal insulin rate, the bolus 
insulin doses and the carbohydrate intake. 

CGM provides the glucose reading every five minutes 
which determines the uniform sampling period used in 
the data processing specified below. The glucose meter 
readings have been also available. However, these values 
serves only as the calibration of CGM and have not been 
used in the prediction of glucose concentration. The 
insulin delivery data are automatically logged by the 
insulin pump. The basal insulin rate and the bolus doses 
are logged separately corresponding to the intensive 
insulin therapy. Finally the carbohydrate intake has been 
logged in the classical diabetic diary. 

As mentioned above, three data acquisition sessions 
with one subject have been carried out in the three 
different months. Each session lasted for approximately 
four days. Figs. 1, 2 and 3 show the data corresponding 
to March, April and May session respectively. 

To design the predictor of glycemia the data set of 
each session has been splitted to half to obtain the data 
for a prediction model identification (first half) and the 
data for the validation of the prediction model. 

 

 
 

Fig. 1. Dataset — March 

 
 

Fig. 2. Dataset — April 

III. Methods 
The raw data from the previous section have been pre- 

processed for further use. The data have been resampled 
with the sampling period TS = 5 [min], which is 
determined by the CGM system. The missing glycemia 
data (gaps larger than 5 minutes) have been linearly 
interpolated. No filtration of CGM signal has been 
considered. We consider a prediction model consisting of 
two parts. A part with fixed structure and parameters set 
to the average population values and a part which is the 
subject of identification. [3], [5] use a similar approach 
as discussed in Section I. The first part part of data 
described in Section II is used for the identification and 
the glycemia predictor design. However, an impulse 
nature of the bolus insulin and carbohydrate intake data 
is not convenient for the identification purposes.  

Therefore the first part of the model generates a 
couple of auxiliary signals that serve as an input to the 
second part of model. The first part corresponds to the 
carbohydrates and insulin absorption. We employ simple 
compartmental models [11] to describe the carbohydrate 
and insulin absorption. The carbohydrate absorption 
model has the form: 

 

      1 1
G

G G
F t F t A d t

t t
    (1) 

 

      1 1

G G
Ra t Ra t F t

t t
    (2) 
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where Ra(t) [mg/kg/min] is rate of appearance of glucose 
in plasma and F(t) is glucose appearance in the first 
compartment. The parameter AG [unitless] is 
carbohydrate bioavailability and tG [min] is the 
corresponding time constant. The signal d(t) [mg/kg/min] 
has the form d(t) = D(t)δ(t), where D(t) [mg/kg] is the 
amount of ingested carbohydrates and δ(t) is a Dirac 
impulse approximation (accounting the sampling 
frequency) at meal time. Both are determined by the 
carbohydrate data. The parameter values are tG = 75 
[min], AG = 0.9. The body weight is BW = 75 [kg]. 

The insulin absorption model has the form: 
 

      1 1
1

I
S t S t v t

t
    (3) 

 

      2 2 1
1 1

I I
S t S t S t

t t
    (4) 

 

      2
1 1

I
I I

I t k I t S t
t V

  
     

  
  (5) 

 
where I(t) [μU/ml] is the plasma insulin concentration, 
S1(t) and S2(t) [μU/kg] represent the states of 
compartments and v(t) [μU/kg/min] is the total 
subcutaneous insulin infusion rate including both basal 
and bolus insulin. The time constant tI = 60 [min], the 
rate constant kI = 0.2 [1/min] and the distribution volume 
of plasma insulin VI = 20 [ml/kg] are the considered 
model parameters. 

The second part of the prediction model is identified 
as an autoregressive exogenous (ARX) model with two 
inputs and one output. Particularly the rate of glucose 
appearance Ra(t) and the insulin concentration I(t) are the 
inputs and the glucose concentration G(t) [mmol/l] 
(glycemia measured by CGM) is the output. The ARX 
model has the form 
 

 
   

         

1

1 1
Ra I
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B z Ra k B z I k k
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where ξ(k) is the white noise disturbance and the 
polynomials have the standard form, i.e.  
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The second part of the considered model corresponds 

to the plasma glucose and insulin kinetics and the 
subcutaneous measurement of the glucose. 

 
 

Fig. 3. Dataset — May 
 

Relatively high order of the second part of the model 
is necessary. Namely the polynomial degrees nG, nRa and 
nI have to be chosen sufficiently high to capture the 
relevant model dynamics and time delays. 

The quality of the glucose predictor can be accessed 
by several methods. The mathematical metrics such as a 
percentage fit or the root mean squared error can be used 
[3]. However in this case the diabetes-specific metrics is 
widely used. This metrics is based on the well-known 
Clarke error grid analysis (EGA) [12]. 

For the evaluation of the continuous glucose 
monitoring systems a continuous glucose – EGA (CG-
EGA) has been introduced [13]. [7], [14] introduce 
modifications of the CG-EGA to evaluate the glucose 
predictions. The main difference between classical 
Clarke EGA and other mentioned is that the CG-EGA 
involves also the evaluation of the glucose rate of 
change, i.e. rate-error grid analysis (R-EGA). From the 
prediction point of view CG-EGA based evaluation can 
be viewed as a less conservative metrics compared to the 
classical Clarke EGA. Therefore in this work the 
classical Clarke EGA is considered for prediction 
evaluation. 

IV. Results 
A single prediction model has been designed or 

identified for each dataset separately. The first part of the 
models is the same in each case with the parameter 
values as reported in Section III. 



 
Marián Tárník, Vladimír Bátora, Tomáš Ludwig, Ivan Ottinger, Eva Miklovičová, Ján Murgaš 

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved                                               International Review of Automatic Control, Vol. 8, N. 2 

116 

IV.1. Identification 

The second part of the model, i.e. ARX model is 
identified for each dataset. The polynomial degrees nG, 
nRa and nI have been chosen from the intervals 1–8, 1–16 
and 1– 16 respectively. The choice of the degrees has 
been based on the best loss-function value criterion 
evaluated using the validation data. The chosen degrees 
of ARX model polynomials are reported in Table I. 

 
TABLE I 

ARX POLYNOMIALS DEGREES CHOSEN 
Model nG nRa nI 

Model No.1 (Dataset - March) 8 2 1 
Model No.2 (Dataset - April) 6 16 15 
Model No.3 (Dataset - May) 7 4 3 

 
The results of the identification for each dataset are as 

follows. Dataset — March (model No.1): 
 

 

 1 1 2

3 4 5

6 7 8

1 1 588 0 5878

0 06326 0 1704 0 1585

0 1149  0 1417 0 0675

A z . z . z

. z . z . z

. z . z . z

  

  

  

   

   

  

 (7a) 

 

  1 1 20 1546 0 1374Ra z . z .B z     (7b) 
 

  1 17 644 5IB z . e z     (7c) 
 

Dataset — April identification yields: 
 

  1 1 2 3

4 5 6
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Finally the identification results for the dataset — 

May (Model No.3) are: 
 

      1 1 2 3

4 5 6 7

1 1 847  1 198 0 6547

0 4265 0 2429 0 2651 0 1348

A z . z . z . z

. z . z . z . z

   

   

   

   
 (9a) 

  1 1 2

3 4
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0 218 0 2352

RaB z . z . z

. z . z

  

 

  

 
 (9b) 

 
  1 1 2 30 0162 0 03427 0 0187IB z . z . z . z       (9c) 

 
The residual autocorrelation analysis has been done to 

validate the models using validation data. 
The representative example of residual analysis is 

shown in Fig. 4 which presents the results of model No.3 
(dataset — May). The residuals correlation functions of 
all identified models indicates close to white noise 
correlation properties. 

The other criterions for the degree choice, namely 
Akaike’s information theoretic criterion (AIC) and Rissa- 
nen’s minimum description length (MDL) criterion [1], 
suggest in general lower degrees of polynomials, 
especially nG, with lower model percentage fit (not 
reported in the paper). 

However the aim is the nP–step ahead prediction, 
where nP is circa eight, as discussed later. Therefore the 
higher polynomial degrees have been desired. 

 

 
 

Fig. 4. Correlation function of residuals with 99% confidence interval. 
ARX model identified for the dataset — May (Model. No.3). Evaluated 

on the validation data 

IV.2. Prediction 

The prediction horizon approximately 20 to 30 
minutes is usually considered in the glucose short-term 
prediction [3], [4], [14]. However, 120 minutes can be 
also considered as a short-term prediction depending on 
the sampling period, for example see [5]. 

In this paper we consider a prediction horizon of 40 
minutes, which corresponds to 8-step ahead prediction, 
i.e. nP = 8 since the sampling period TS = 5 [min]. 

The results of prediction are shown in Fig. 5. For each 
validation dataset a separate predictor is used as 
discussed above. The predictors are assessed by means of 
Clarke EGA. Fig. 6 shows the assessment of results. 
Table III summarizes the results. 

IV.3. The Model Gains 

Consider the gain from the model first input Ra(k) to 
the output G(k), i.e. gRa [mmol/l/mg/kg/min]. Similarly 
the gain from the model second input I(k) to the output 
G(k) is gI [mmol/l/μU/ml]. The values of these gains for 
models (7), (8) and (9) are reported in Table II in the 
column unconstrained least squares. 
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TABLE II 
THE MODEL GAINS 

 unconstrained least squares constrained quadratic 
program 

Dataset gRa gI gRa gI 
March 1.5931 -0.0071 3.1427 -0.0501 
April -0.8017 0.0083 1.8764 -0.0533 
May -0.3324 0.0601 5.7655 -0.0747 

 

 
 

Fig. 5. Comparison of the original CGM data (black dots) with the 
predicted glucose concentration 40 minutes ahead (solid gray line) 

 
The insulin lowers and carbohydrate intake increases 

the glucose concentration. Therefore gI is expected to be 
negative and gRa positive. The identified model No.2 and 
No.3 have gains gI and gRa which are not physiologic. 
Insulin boluses and carbohydrate intake are highly 
correlated as they occur almost at the same time, which is 
obvious since the pump and therefore the intensified 
insulin therapy is used in this case. 

The correlation between bolus and carbohydrate 
intake can explain the unexpected model parameters such 
as the mentioned gains. To overcome this issue a 
sophisticated method for parameter identification should 
be used instead of common least squares. 

We consider a constrained convex quadratic program 
in the form: 

 
1
2

subject to

T T Tmin H H y H

G h


  

 

 

(10) 

 
where G Ra In n n   is the estimated parameters vector 
containing the coefficients of polynomials A, BRa and BI . 

y ∈ RN consist of the measured samples and N is the 
number of the samples. The matrix H is composed so that 
the vector  Nˆ ˆy H , y    is a one-step ahead 
prediction of measured glucose concentration (vector y) 
– Table III. Further the inequality constraint matrices has 
the form: 

 
0 0

0 0

0 0
Ra

nG

n

nI

I
G I

I
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where 1 1 1G Ra I

G I

n n n
n nRa nI ,I ,I       are the 

vectors of ones. Finally the vector  1 0 0 0005 Th .   
is considered in this particular case. 

 

 
 

Fig. 6. Clarke error grid analysis 
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TABLE III 
EVALUATION OF PREDICTION MODELS PERFORMANCE 

ON 40 MINUTES PREDICTION HORIZON (VLAIDATION DATA) 
Model zona A zone B zone C zone D zone E 
No.1 70.6093 22.4014 1.0753 5.914 0 
No.2 77.6364 20 0 2.3636 0 
No.3 89.6243 10.3757 0 0 0 

Percentage of points falling within EGA zones 
 
Same model polynomial degrees have been used as in 

the previous unconstrained least squares method. Solving 
the quadratic program yields the model gains (gRa and gI) 
as reported in Table II in the column constrained 
quadratic program. In general the prediction results are 
almost same as obtained with previous method. Fig. 7 
illustrates the prediction results for May dataset.  

The results of this alternative identification method are 
summarized in Table IV. 

 
TABLE IV 

CLARKE EGA OF PREDICTION MODELS IDENTIFIED BY MEANS 
OF CONSTRAINED QUADRATIC PROGRAM 

dataset zona A zone B zone C zone D zone E 
March 72.58 20.43 0.89 6.09 0 
April 77.09 20.54 0 2.36 0 
May 90.34 9.66 0 0 0 

Percentage of points falling within EGA zones 
 

 
 

Fig. 7. Clarke EGA of prediction results obtained by means 
of constrained quadratic program, dataset May 

V. Conclusion 
In this paper we designed the prediction models for 

the short-term prediction of the glycemia with the 
prediction horizon of 40 minutes. The design is based on 
the routine diabetes self-monitoring data and CGM data 
measured in real-life conditions. 

The standard identification method does not provide 
acceptable model gains. Therefore, we proposed and 
evaluated an alternative identification method. The 
results of the diabetes-specific evaluation metrics based 
on the Clarke error grid analysis show a good quality of 
the proposed prediction models. 
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Fig. 3. Transmission line with joint compensation 
 

Tap changing transformer is connected at sending end 
of the transmission line and shunt compensation is 
provided at the receiving end of the line. A load-flow is 
conducted on the transmission line for various values of 
tap settings and shunt compensation.  

The sending end (bus 1) is considered as slack bus, the 
non-tap side of transformer (bus 2) is considered as PQ 
bus with P=0, Q=0, and receiving end (bus 3) as PQ bus 
with PL, QL, and shunt compensator Qcomp connected to it. 

IV. Case Study 
For the case study, the transmission line and 

transformer parameters are taken as follows. 
Line parameters: 

 Series resistance = 0.04699 pu 
 Series reactance = 0.19797 pu 
 Half line shunt susceptance = 0.0219 pu 

Transformer parameters: 
 Series reactance = 0.20912 pu 

The load details at the bus 3 are PL = 0.5 pu, QL = 0.19 
pu and QG = 0.4 pu. Transformer tap is varied from 0.8 to 
1.2 and the reactive compensation is varied from -0.4 pu 
(-40 MVAr) to +0.4 pu(40 MVAr). The control variables 
(in this case transformer tap at sending end and reactive 
compensator at the receiving end) are varied such that a 
constant voltage is always maintained at the receiving 
end. 

A look-up table (Table I) is prepared to show the 
various combinations of both the control variables 
(transformer tap and reactive compensation) in order to 
keep the receiving end (bus 3) voltage at a constant 
value. The constant voltage contours are also plotted on 
the parametric plane (Fig. 4). 

IV.1. Voltage Variation 

It is clear that the voltage varies with both transformer 
tap and shunt compensator. The voltage value for 
different tap values and shunt compensator values are 
shown in the Table II. 

The same is displayed in Figs. 5, 6, and 7. As it is well 
known the voltage magnitude increases with the reactive 
compensation moving from more inductive to less 
inductive and more capacitive, Fig. 5 depicts the same.  

The transmission line is on the non-tap side, so 
voltage magnitude is decreased with increase in tap and 
vice-versa, Fig. 6 shows this. 

 
TABLE I 

LOOK-UP TABLE FOR CONSTANT VOLTAGE 
 Qcomp(MVAr) 

Tr. Tap 
Voltage, pu 0.85 0.9 0.95 1.0 1.05 1.1 1.15 

0.8 - - - - - -32.07 -23.75 
0.85 - - - - -32.97 -23.3 -14.57 
0.9 - - - -34.62 -23.6 -13.44 -4.098 

0.95 - - -37.55 -24.52 -12.87 -2.287 7.773 
1.0 - - -26.8 -13.17 -0.9078 10.46 20.68 

1.05 - -30.46 -14.74 -0.4347 12.32 23.98 35.08 
1.1 -36.29 -18.12 -1.669 13.17 26.63 39.29 - 

1.15 -23.37 -4.25 12.74 28.5 - - - 
1.2 -9.22 10.61 28.47  - - - 

 
TABLE II 

VOLTAGE VALUES FOR DIFFERENT TAP AND SHUNT COMPENSATOR VALUES 
 Voltage at receiving end, pu 

Tr. Tap 
Qcomp(MVAr) 

0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2 

-40 1.1684 1.0845 1.0079 0.9372 0.8709 0.8077 0.7461 0.6838 0.6164 
-35 1.1872 1.1050 1.0304 0.9620 0.8983 0.8384 0.7811 0.7251 0.6684 
-30 1.2054 1.1248 1.0519 0.9853 0.9239 0.8666 0.8124 0.7605 0.7096 
-25 1.2230 1.1438 1.0725 1.0076 0.9480 0.8927 0.8410 0.7920 0.7449 
-20 1.2401 1.1622 1.0922 1.0287 0.9707 0.9172 0.8675 0.8207 0.7763 
-15 1.2568 1.1800 1.1112 1.0490 0.9924 0.9404 0.8922 0.8472 0.8049 
-10 1.2730 1.1973 1.1296 1.0686 1.0131 0.9623 0.9155 0.8720 0.8313 
-5 1.2887 1.2141 1.1474 1.0874 1.0330 0.9833 0.9377 0.8954 0.8561 
0 1.3042 1.2304 1.1646 1.1056 1.0521 1.0034 0.9588 0.9176 0.8794 
5 1.3192 1.2463 1.1814 1.1232 1.0706 1.0228 0.9790 0.9388 0.9015 

10 1.3340 1.2618 1.1977 1.1403 1.0885 1.0414 0.9985 0.9590 0.9225 
15 1.3484 1.2770 1.2136 1.1569 1.1058 1.0595 1.0172 0.9785 0.9427 
20 1.3625 1.2918 1.2291 1.1731 1.1226 1.0769 1.0353 0.9972 0.9621 
25 1.3764 1.3064 1.2443 1.1888 1.1390 1.0939 1.0529 1.0154 0.9808 
30 1.3900 1.3206 1.2591 1.2042 1.1549 1.1104 1.0699 1.0329 0.9989 
35 1.4034 1.3346 1.2736 1.2193 1.1705 1.1265 1.0865 1.0499 1.0164 
40 1.4166 1.3482 1.2878 1.2340 1.1857 1.1421 1.1026 1.0665 1.0334 

1 2    3 

Q 

a : 1 

Qcomp PL , QL 
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Fig. 4. Constant voltage contours 
 

 
 

Fig. 5. Receiving end voltage variation with shunt compensation 
 

 
 

Fig. 6. Receiving end voltage variation with transformer tap 
 

From the data in Table II and figures it is interesting to 
observe that, for a given compensation the effect of 
voltage variation with respect to variation in tap setting is 
almost the same as the variation of the voltage with 
respect to compensation for a given tap setting. This 
observation, of course is subject to the reactive power 
limits that are imposed on the compensation. 

 
 

Fig. 7. Receiving end voltage variation with tap and shunt 
compensation 

 
But in case of receiving end voltage angle it is 

different. At lower tap values the change in shunt 
compensator has no effect on voltage angle. At higher tap 
values there is a minor change in angle (approximately 60 
in this case) with the change in shunt compensator value 
varying from -40 to +40 MVAr. These voltage angle 
changes are shown in Figs. 8, 9 and 10. 

 

 
 

Fig. 8. Receiving end voltage angle variation with tap and shunt 
compensation 

 

 
 

Fig. 9. Receiving end voltage angle variation with transformer tap 
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Fig. 10. Receiving end voltage angle variation with tap 
and shunt compensation 

IV.2. Reactive Power Flow In Line 

The reactive power flow variation with both the 
control parameters is also observed. It is interesting to 
note that the reactive power variation with tap change is 
around 0.1 pu irrespective of the shunt compensation 
value. On the other hand a significant change in reactive 
power flow in the line is observed with the change in 
shunt compensator value at any tap. This is shown in 
Figs. 11, 12, and 13 

 

 
 

Fig. 11. Reactive power variation with tap 
 

 
 

Fig. 12. Reactive power variation with shunt compensation 

 
 

Fig. 13. Reactive power variation with tap and shunt compensation 
 

A look-up table for constant reactive power flow in 
the line is formed. The values in the Table III show the 
required shunt reactive compensation value at the 
receiving end for a given tap and line reactive power 
flow. 

For example, in order to keep the line reactive power 
flow at the sending end of the line at -0.2 pu, the shunt 
compensation value is 1.606 MVAr at tap 0.9 and -2.402 
MVAr at tap 1.1. 

The values are shown in Table III and the 
corresponding constant reactive power flow lines are 
displayed in Fig. 14. 
 

 
 

Fig. 14. Constant reactive power flow lines 

IV.3. Real Power Flow in Line 

As expected the real power flow variation in this case 
is very minimal because the model has slack bus and PQ 
bus in a single line. As the load bus is a PQ bus, any 
change in line flow reflects in the line losses. 

From Fig. 15 and Fig. 16 this can be observed. The 
maximum change in the real power is approximately 
0.027 pu at any combination of tap and shunt 
compensator value. Plots are also drawn in PQ plane for 
the real and reactive powers at the sending end of the line 
for various tap and shunt compensator values. These are 
shown in Figs. 17 and 18. 
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TABLE III 
LOOK-UP TABLE FOR CONSTANT REACTIVE POWER FLOW IN LINE 

 Qcomp  (MVAr) 
Q in Line, pu 

Tr. Tap -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 

0.8 36.3 24.96 14.01 3.474 -6.554 -15.99 -24.7 -32.41 
0.85 35.16 23.93 13.04 2.552 -7.485 -16.98 -25.83 -33.86 
0.9 34.03 22.88 12.07 1.606 -8.42 -17.96 -26.93 -35.22 

0.95 32.88 21.82 11.07 0.657 -9.37 -18.95 -28.02 -36.48 
1.0 31.68 20.71 10.04 -0.3277 -10.34 -19.96 -29.12 -37.74 

1.05 30.44 19.58 8.981 -1.337 -11.32 -20.97 -30.22 -38.99 
1.1 29.15 18.39 7.862 -2.402 -12.37 -22.03 -31.34  

1.15 27.29 17.13 6.678 -3.536 -13.49 -23.16 -32.53  
1.2 26.34 15.76 5.836 -4.783 -14.71 -24.39 -33.8  

 

 
 

Fig. 15. Real power flow variation with reactive compensation 
 

 
 

Fig. 16. Real power loss variation with tap and shunt compensation 
 

 
 

Fig. 17. PQ curves for various taps 

 
 

Fig. 18. PQ curves for different shunt compensation 

IV.4. Voltage Profiles 

At each combination of tap and shunt compensator 
values the voltage profile along the line is observed. As is 
in the model both the ends of the line (bus 2 and bus 3) 
are considered as PQ buses; hence the voltage magnitude 
varies. The voltage profiles along the line for some 
values, (depending on the system under study, in this 
case tap varies from 0.8 to 1.2 in steps of 0.2 and Qcomp is 
varied from -40 to +40 in steps of 20), are shown in Fig. 
19. 

 

 
 

Fig. 19. Voltage profiles along the line 
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The voltage magnitudes at both ends are at different 
values. It is not possible to keep both the voltage 
magnitudes at any same desired value. However with the 
available controls, both ends of the line can be 
maintained at the same voltage magnitude only in some 
cases. But some of these values are beyond the allowable 
voltage levels. If the allowable voltage limits are 
considered as 0.95pu and 1.05 pu, there are only two 
valid rows which are in bold. Those details are shown in 
Table IV. The voltage profiles for the two valid cases are 
shown in Figs. 20 and 21.  
 

TABLE IV 
VALUES OF TAP AND Qcomp FOR SAME VOLTAGE ON LINE BOTH ENDS 

Tap Qcomp 
MVAr 

Voltage 
magnitude 
at receiving 

end, pu 

Voltage 
angle at 

receiving 
end, deg 

Voltage 
magnitude  
at sending 

end, pu 

Voltage 
angle at 
sending 
end, deg 

0.8 -10.91 1.27 -7.582 1.27 -3.836 
0.85 -10.3 1.196 -8.564 1.196 -4.336 
0.9 -9.719 1.131 -9.608 1.131 -4.869 

0.95 -9.191 1.072 -10.72 1.072 -5.437 
1 -8.655 1.018 -11.9 1.018 -6.038 

1.05 -8.148 0.9701 -13.14 0.9701 -6.676 
1.1 -7.656 0.9259 -14.46 0.9259 -7.351 

1.15 -7.168 0.8853 -15.86 0.8853 -8.065 
1.2 -6.655 0.8478 -17.34 0.8478 -8.821 

 

 
 

Fig. 20. Voltage profile at tap=1.0 and Qcomp = -8.655 MVAr 
 

 
 

Fig. 21. Voltage profile at tap=1.05 and Qcomp = -8.148 MVAr 

As the voltage angle difference is very less (5.8620 
and 6.4640), the voltage all along the line is almost at the 
same value, hence exhibiting a flat voltage profile [10]. 

V. Conclusion 
The combined effect of transformer tap and shunt 

compensation on the voltage profile of a transmission 
line has been investigated. In particular, constant voltage 
contours in the parametric plane (like phase plane 
curves) have been plotted and analyzed. Similarly 
constant reactive power plots have also been drawn in the 
similar parametric plane. 

These investigations help in designing an expert 
system situated at the sending end to maintain nearly a 
constant voltage profile over the transmission line. It is 
observed that, while both the tap and shunt compensator 
influence both the voltage magnitude and reactive power, 
the tap controls more of voltage than reactive power and 
the shunt compensator controls more of reactive power 
than the voltage magnitude. 
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State-Feedback Control in TCP Network: Geometric Approach 
 
 

K. Lefrouni, R. Ellaia 
 
 
Abstract – In this paper, we study the problem of congestion of a router, initially, we propose a 
model of TCP based on the fluid flux model and, secondly, considering frequency-domain 
approach, we synthesize a state-feedback control to ensure the stability of our system. This study is 
essentially based on the analysis of the stability of the characteristic equation associated to closed 
loop system with consideration of communication delays. Finally, simulation results are provided 
to validate the proposed methodology. Copyright © 2015 Praise Worthy Prize S.r.l. - All rights 
reserved. 
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Nomenclature 
TCP Transmission Control Protocol  
AQM Active Queue Management 
QoS Quality of Service 
SISO Single Input Single Output system 
PI Proportional Integral 
R Round-Trip Time (RTT) 
W TCP window size 
N Number of TCP sessions 
Tp Propagation delay 
C Link capacity 
p Probability of dropping packets 
q Queue length 
K State feedback gain  
x(t) State vector 

1  Delay time from the source to the router 

2  Delay time from the router to the source via 
the receiver 

*  Critical delay 

0  Critical crossing frequency 
  Set of crossing frequency 

I. Introduction 
We were interested in this paper at the problem of 

congestion of a router in TCP Network, more precisely, 
we have focused on the determination of stability regions 
of the closed-loop system, and on the development of a 
state feedback control based on Active Queue 
Management (AQM) mechanism. Implemented in the 
router, this control law will allow TCP traffic regulation 
and, at the same time, maintaining a certain level of 
Quality of Service (QoS). Several control laws have been 
developed to regulate congestion in the router [1]-[4].  

However, most of these studies have been based on 
temporal approaches that can grouped into two 
categories,  the  first  category  uses  the  state  prediction 

techniques [5]-[6] and the second, the Lyapunov-
Krasovskii functionals [7]-[9] and the Lyapunov-
Razumikhin functions [10]-[11]. 

Although interesting in theory, these methods 
requiring multiple matrix calculations and are difficult to 
use in practice. Studies that are interested in solving a 
problem using frequency approaches are very few, and 
are based generally on the smith predictor [12]-[13], a 
technique that is only valid when the communication 
delays from the source to the router and from the router 
to the source are identical, and when the system is stable 
in the open loop. Motivated by synthesis techniques in 
the frequency domain, we propose to develop a state 
feedback control law by using a so-called geometric 
approach (see [14]-[16]). This technique allows to 
determine the system stability region in the control 
parameter space with asymmetric communication delays.  

Thus allowing to choose the parameters of the control 
law belonging to the stability region and satisfying the 
desired requirements. The remaining of the paper is 
organized as follows. In section 2, we introduce a fluid 
flow model of TCP network, section 3 is dedicated to the 
synthesis of a state feedback control law ensuring the 
stabilization of the closed loop system. Section 4 presents 
an example extracted from the literature and simulations 
validate the proposed methodology. Finally, we present 
our conclusions in section 5.  

II. TCP Network Modeling 
The majority of research examining the control of 

congestion in TCP network have used a model based on 
the fluid mechanics, and which was developed by Misra 
et al [17]-[18]. 

II.1. Preliminaries 

Considering the network parameters: TCP window 
size, number of TCP sessions, link capacity, probability 
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of dropping packets and the queue length (W, N, C, p and 
q respectively), the fluid model of TCP network is the 
following: 

 

 

   
    

     

   
   

     1 2

1
2

W t W t R t
W t p t R t

R t R t R t

W t
q t N t C

R t

R t t t 

 
  





 

  




 (1) 

 
where  R t , 1  and 2  are respectively, the round-trip 
time (RTT), the delay time from the source to the router 
and the delay time from the router to the source via the 
receiver. 

 
Remark 1. The communication between the router and 

the different sources can be considered as a single input 
single output system (SISO). 

Indeed the TCP flow model (1) considers the flow 
from N TCP sessions without specifying the source of 
each session. 

In this paper, we consider that the delays are constant 
and asymmetric. 

II.2. The Linearized TCP Fluid Model 

The linearization of the model (1) requires firstly the 
determination of the operating point, this point is defined 
by the two equations 0W   and 0q  . 

After calculation, we find: 
 

 
2 0

0 0 02 and  =
R C

W p W
N

  (2) 

 
Thus, the linear model around the operating point is 

defined by: 
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For more details about the linearization, see [19]. As a 

result, the state space model of TCP network can be 
written as follows: 

 

 
      

 
1
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 (4) 

 
where      =   Tx t W t q t     is the state vector, 

   =u t p t  is the input, and: 

 1 1

2 3

0
   0 1

0
a b
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with: 
 

2
0

1 2 3 12 2
0 00
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2
R CN Na , a , a , b
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III. State-feedback Control Law 
This section will be devoted to the synthesis of a state 

feedback control ensuring the stability of the closed loop 
system. 

As is mentioned in the introduction, we conducted a 
study in the frequency domain based on a geometric 
approach [16], which allows to determine in the control 
parameter space, the areas where the stability is assured. 

III.1. Principle of Geometric Approach 

The geometric approach is a frequency method 
allowing, firstly, the determination of stability regions 
during the synthesis of a control law, and secondly, the 
determination of the regions where the estimation error 
converges to zero during the synthesis of an observer. 

This approach goes through several stages. For 
example, during the synthesis of a control law. 

First, assuming a zero delay, we determine the 
conditions for which the closed loop system is stable, 
which amounts to determine the conditions where the 
characteristic polynomial of the closed loop system is 
Hurwitz. 

Then, in the second step, we determine the set of 
points for which the characteristic equation associated to 
the closed loop system has at least one pure imaginary 
root for a fixed value of the delay, the set of these points 
is called crossing curve. 

Finally, we determine the direction of crossing which 
represents the direction of evolution of crossing points 
when the parameters of correction vary. This allows to 
know if these parameters have a stabilizing effect (roots 
cross the imaginary axis from the right to the left) or 
destabilizing effect.  

Several studies are based on this approach, in 
particular, the authors of [20] have developed a PI 
controller stabilizing a linear system with delayed input. 

In the following, we present only the necessary points 
for solving our problem.  

III.2. Stability Study 

We will now apply the different steps mentioned in 
the previous paragraph, to find the stability regions of the 
closed loop system. 

The state feedback control law has the following form: 
 

    u t Kx t   (5) 
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where K is the state feedback gain to ensure the stability 
of the closed loop system (4) for any *

1   (where *  
is the maximum value of the delay 1 , beyond which the 
closed loop system becomes unstable). 

Under the assumption that the pair (A, B) is 
controllable, the problem then is to determine the gain K, 
such that the characteristic equation associated to the 
closed-loop system: 

 

     1 1
2 0s sH s,e det sI A BKe       (6) 

 
is Hurwitz for any *

1  . By introducing the Laplace 
transform, our system can be written as the following 
form: 

 

 
     
   

1ssx s Ax s Bu s e

y s Cx s

  



 (7) 

 
Also, the control law takes the form: 
 

    u s Kx s   (8) 
 
where s is the Laplace variable, and  1 2 K k , k  is the 
state feedback gain. The characteristic equation 
associated to the closed loop system is then defined by: 

 
       1

1 2 1 0sH s,k , k , Q s P s e      (9) 
 
where Q(s) and P(s) are two polynomials with real 
coefficients defined by: 
 

 
   
   

2
1 3 1 3

1 2 2 3 1 1

Q s s a a s a a

P s b a k a k k s

   

  
 (10) 

 
Remark 2. The characteristic Eq. (9) has real 

coefficients, therefore, if s is a root of (9) then its 
conjugate s s   is also a root. 

Additionally, if s  is purely imaginary, we have 
s s  . Thus, if there are characteristic roots located on 
the imaginary axis, then it verify the following system: 
 

 
     
     

1

1

1 2 1

1 2 1

 0

 0

s

s

H s,k , k , Q s P s e

H s,k , k , Q s P s e









  

     
 (11) 

 
Consider first the case of a closed loop system with 

zero delay, and seeking conditions on the parameters of 
the corrector to ensure the stability of the closed loop 
system (4). In this case, so that the characteristic 
polynomial  1 2 0 0H s,k , k ,   defined by (9) is Hurwitz.  

That is, all its roots are located in the complex left half 
plane, it is necessary that: 

 1 3 3 1 3
1 2 1

1 2 1 2

a a a a a
k ,k k

b a b a


    (12) 

 
which represents a first condition on the parameters of 
the corrector. Furthermore, the determination of 
conditions to ensure the stability of the closed loop 
system in the presence of a non-zero delay will be the 
subject of the following sections. 

III.3. Crossing Curves 

In order to determine the parameters of the state 
feedback gain K ensuring the distribution of the roots of 
the characteristic Eq. (6) in the complex left half plane, it 
is necessary, first, to determine the K parameters for 
which the characteristic Eq. (6) has at least one pure 
imaginary root. This amounts to solving the following 
equation: 

 

  0 0
** j, R , H j ,e         (13) 

 
The K parameters for which (13) is satisfied, that is, 

for which the system is at the limit of stability, define 
what is called the crossing points. Which then allows to 
generate the crossing curves in the space defined by the 
K parameters for a fixed value of the delay * . 

In view of our system (4) we can then determine all 
the crossing points in the space of parameters (k2, k1) as 
follows: 

Proposition 1. For a delay * > 0 and  , the 
crossing points (k2, k1) satisfy the following relations: 
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 (15) 

 
with: 

   
   

1 1 3

1 3 1

* *

* *

b sin b a cos

b a sin b cos

   

   

 

 
 

 
where   is the set of crossing frequency R   such 
that there is at least one pair (k2, k1) for which 

 1 2 0*H j ,k , k ,    is satisfied. 
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Proof: By rewriting the characteristic Eq. (13) as 
follows: 
 

 
 

2
1 3 1 3

1 2 2 3 1 1 0
*j

a a j a a

b a k a k j k e 

 

 

    

   
 

 
Then, by separating the real and imaginary parts, we 

obtain: 

 
   

2
1 2 2 1 1 3

1 2 2 1 1 3

*

*

k k a b cos a a

k k a b sin a a

  

  

  

  
 

 
The direct resolution of these two equations leads to 

the relations (14) and (15). 
 
Remark 3. The restriction of the study to the positive 

frequencies arises from the remark 2, which, stipulates 
that: 

 

   1 2 1 2 0  0* *H j ,k , k , H j ,k , k ,        
 

Thus, considering the numerical example presented in 
[3], and different values of  0.3, 0.5, 0.7*  , we get, 
for positive values of  , the crossing curves shown in 
Fig. 1, Fig. 2 and Fig. 3. 

 

 
 

Fig. 1. Crossing curves for the closed loop system with 0 3* .   
 

 
Remark 4. When   tends to infinity, the parameters 

k1 and k2 given by (14) and (15) also tends to infinity.  
But, in the context of our study, we are interested in 

determining the crossing points (k1, k2) such as k1 and k2 
are finite. So subsequently, we will assume that the set of 
crossing frequency   consists of a finite number of 
finite length intervals. 

III.4. Crossing Direction 

The crossing curves defined by (14) and (15) are 
continuous. 

 
 

Fig. 2. Crossing curves for the closed loop system with 0 5* .   
 

 
 

Fig. 3. Crossing curves for the closed loop system with 0 7* .   
 

So by using the approach described in [20] and [15], 
we can determine the crossing direction. For that, 
consider the real numbers Ri and Ii,  1,2,3i  defined 
by: 
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 (16) 

 
Proposition 2. The crossing curve is regular 

everywhere except at the points where s j  is a 

multiple solution of  1 2 0*H s,k ,k ,  . 

Proof: By applying the implicit function theorem, the 
tangent crossing curve is defined by: 
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1 0 0 1

0 2 2 01 1 2 2 1

1
dk

R I R Id
R I R Idk R I R I

d





 
   
        
 

 (17) 

 
provided that: 
 
 1 2 2 1 0R I R I   (18) 
 

It follows that the crossing curve is regular 
everywhere except for the points where (18) is not 
satisfied, that is: 
 

 1 2 0
dk dk
d d 

   (19) 

 
thus, 0 0 0R I  , which implies: 
 

 
 1 2

0
*

s j

H s,k ,k ,

s










 (20) 

 
In view of (20) and (17), and given that 

 1 2 0*H j ,k ,k ,   , it appears that s j  is a 

multiple solution. Now, based on the concepts introduced 
in [15], we can determine the crossing direction, which 
is, by definition, the direction in which the roots cross the 
imaginary axis as (k1, k2) deviates from the crossing 
curve. 

When (k1, k2) traverses the crossing curve from the 
right to the left, a pair of solution of 

 1 2 0*H j ,k ,k ,    crosses the imaginary axis from the 

left to the right, which translates into the inequality: 
 

2 1 1 2 0R I R I   
 

In our case, by a simple calculation, we find: 
 

 
2
1 2

2 1 1 2 0b aR I R I



    (21) 

 
Thus, we deduce that the crossing direction is to the 

left. 

III.5. Stability Regions 

Based on the results of the previous paragraphs, we 
will determine the stability regions of the closed loop 
system. In other words, the set of values of the state 
feedback gains, for which the characteristic Eq. (6) has 
all its roots in the left half plane for any 1  belongs to 

0, * 
  . 

As we have seen, the condition (12) must be satisfied 
to ensure that all the roots of H (s, k1, k2, 0) = 0 have 
strictly negative real parts. In addition, we found that R2I1 
- R1I2 < 0, which implies that the crossing is to the left.  

Thus, for 0 5* .  , we obtain the stability region, 
shown in Fig. 4.  
 

 
 

Fig. 4. Stability region for the closed loop system with 0 5* .   
 

Any pair of parameters (k1
*, k2

*) belonging to the 
stability region of the closed loop system, corresponds to 
a state feedback gain K*=[k1

*, k2
*] for which the 

characteristic equation: 
 
  1 2 1 0* *H s,k ,k ,   (22) 

 
is Hurwitz for any *

1  , where *  is an upper bound 
on the delay 1 , beyond which the closed-loop system 
will become unstable. 

It therefore seems important to determine the critical 
value of the delay, from which the stability is not 
preserved. 
 
Proposition 3. Critical delay 

The state feedback control law    *u t K x t  , with 
K*=[k1

*, k2
*], asymptotically stabilizes the closed loop 

system (4) for any 1
*  , such as *  is defined by: 
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 (23) 

 
Proof: Suppose that the characteristic Eq. (22) has an 

imaginary root s j , then we find the following 
equation: 
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     0
*jQ j P j e      (24) 

 
with: 

   1 2 2 3 1 1
* * *P j b a k a k j k     

 
   2

1 3 1 3Q j a a j a a        
 

We can rewrite (24) as follows: 
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Using the Euler's formula, we obtain: 
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By separating the real and imaginary parts, and by 

focusing on the real part, we find the result (23). 
 
Proposition 4. Critical crossing frequency 

The crossing frequency 0  corresponding to the 

critical delay *  is defined by: 
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1 1 0
0

4
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  (25) 

 
with: 

   
2 22
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Proof: From the Eq. (24), we can write:  

 
 
 

 
 

* *j jQ j Q j
e , e

P j P j
  

 
   

 


 

 
By multiplying the terms of these two equations, we 

find the following equation: 
 

        0Q j Q j P j P j        
 

Then, by substituting  Q j  and  P j  by their 

values, we find a quadratic equation in 2 : 
 

 4 2
1 0 0       (26) 

 
The resolution of this equation leads to a single 

positive root 0  defined by (25). 

IV. Simulation 
This section aims to illustrate the various 

developments presented in the previous sections. We 
consider the system presented in [7], whose dynamics are 
described by (4) with: q0 = 175 packets, Tp = 0.2s, C = 
3750 packets/s and for N = 60 TCP sessions, we have W0 
= 15 packets, p0 = 0.008, 1= 0.5 . Therefore, by taking 
into consideration the stability region shown in Fig. 4, we 
arbitrarily choose a pair (k1

*, k2
*) = (-0.0097, 0.00015) in 

this region: 
 

 
 310 9.7 0.15i.e. K    (27) 

 
Then, using Eqs. (23) and (25), we determine the 

critical values of the delay and of the crossing frequency: 
 

0 = 1.3451   and    = 2.0672*   
 
This means that the state feedback gain (27) stabilizes 

the system (4) for any delay 1  belongs to  0 1.3451, .  
We obtain then the Fig. 5, which illustrates the 

temporal evolution of the size of the queue. Now, choose 
another pair (k1, k2) always belonging to the region of 
stability, namely: 

 
  310 11 0 18K .   (28) 
 

We thus find the temporal evolution shown in Fig. 6, 
and the critical values: 

 

0 = 0.7948   and    = 3.2729*   
 

By comparing the results from these two examples, we 
notice that a slight increase in the state feedback gain 
causes, on the one hand, the increase in the critical value 
of the delay  * , which enlarge the interval of allowed 
values for the delay 1  and, on the other, the increase of 
the oscillations. 
 

 
 

Fig. 5. Temporal evolution of the queue length with the state feedback 
gain (27) and the desired length q0 = 175 packets 
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Fig. 6. Temporal evolution of the queue length with the state feedback 
gain (28) and the desired length q0 = 175 packets 

 
It therefore appears that the choice of the gain in the 

stability region is not an easy task. It would be, then, 
interesting to develop a method to choose the best pair of 
gain (k1, k2), taking into consideration the requirements 
of the specifications. 

V. Conclusion and Future Works 
In this paper, we have discussed the phenomenon of 

congestion of router in the TCP network. By considering 
the case of constant and asymmetric delays and based on 
a geometric approach, we have designed a state feedback 
controller, ensuring the stability of our system. 

Then, we have illustrated the viability of this approach 
through a simulation study. However, our hypothesis of a 
constant delay with a zero lower bound is unrealistic 
which can lead to a certain conservatism of the results 
achieved. 

Future works will first focus on the reduction of this 
conservatism, and then the implementation of the 
Luenberger observer, with consideration of the delay that 
occurs in the measurement loop. 
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Using D-STATCOM in Voltage Regulation 
of Future Distribution Systems 

 
 

Y. Bot, A. Allali 
 
 
Abstract – Due to the development of Distributed Generation (DG), which is installed in 
Medium-Voltage Distribution Networks such as generators based on renewable energy, voltage 
control is currently a very important issue. The voltage is now regulated at the MV bus bars acting 
on the On-Load Tap Changer (OLTC) of the HV/MV transformer. This method does not guarantee 
the correct voltage value in the network nodes when the distributed generators deliver their 
power. In this study, the problem of using OLTC for the voltage regulation of a radial distribution 
feeder will be solved by using reactive power compensation using D-STATCOM at the DG 
connected bus. Simulation results reveal that the proposed control method is capable of 
maintaining the system voltage within the permitted range in the worst scenarios of the test system. 
Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
AND Active Distribution Network 
ANM Active Network Management 
AVC Automatic Voltage Control 
DG Distributed Generation 
FACTS Flexible Alternating Current 

Transmission System 
GTO Gate Turn-Off Thyristor 
HV High Voltage 
MV Medium Voltage 
MVDN Medium-Voltage Distribution Network 
OLTC On-Load Tap Changer 
D-STATCOM Distribution-Static Compensator 
VSC Voltage Source Converter 

I. Introduction 
Distributed Generations (DGs) are mentioned usually 

to the production of electricity using small generators 
located in power distribution systems or the power load 
centers [1]-[27]. Due to the development of DG, which is 
installed in Medium-Voltage Distribution Networks 
(MVDNs) such as generators based on renewable energy 
(e.g., wind energy or solar energy), voltage control is 
currently a very important issue [2]. 

In some areas, the installed generation power is 
significantly higher than the consumption. Distributed 
generation (DG) causes altered power flow patterns. 
Thus, the power flow may even become bidirectional. 

The temporary reversal of the power flow can provoke 
voltage rises away from the substation, especially at 
remote feeder ends. If the voltage exceeds the tolerance 
of usually 10 % above nominal voltage, other devices 
and equipment might be damaged [3]. 

The voltage of MVDNs is now regulated acting only 
on the On-Load Tap Changer (OLTC) of the HV/MV 
transformer [4]. The OLTC control is typically based on 
the compound technique, and this method does not 
guarantee the correct voltage value in the network nodes 
when the generators deliver their power [5]. 

According to [6], an active distribution network 
(ADN) is defined as a distribution network with systems 
capable of controlling distributed energy resources 
consisting of generators and storage. 

An ADN should also be able to adopt the integration 
of control and communication technologies for the 
effective management of the new distribution network by 
DNOs [7]. Hence, an active network management 
(ANM) scheme is needed to provide control and 
coordination to power system operation. According to 
[8], ANM is the use of real-time control and 
communication systems to provide a means to better 
integrate renewable distributed generators. 

DNOs consider three worst-case operating scenarios 
in ensuring that their network and their customers will 
not be adversely affected. These scenarios are 
categorized into: i) no generation and maximum system 
demand, ii) maximum generation and maximum system 
demand, and iii) maximum generation and minimum 
system demand. As increasing the generation reverses the 
power flow along the line from the generator to the 
substation, the voltage rises and becomes more severe in 
the absence of demand because all local generation is 
exported back to the primary substation. Hence, the issue 
of voltage rise calls for a management scheme that can 
alleviate excessive voltage rise issues. 

Voltage rise caused by DG can be decreased by 
allowing the generator to absorb reactive power. Using 
synchronous generators, the control of reactive power is 
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usually realized by an excitation system that consists of 
an AC or DC exciter, controller and voltage 
measurement components [9]. However, these generators 
have limitations on control of voltage and reactive power 
in distribution systems and therefore it requires 
additional compensating devices to ensure that the 
voltage level is acceptable. 

The applications of several end users or local 
compensation methods have proven to be a promising 
solution. These methods have several advantages in 
terms of efficiency, flexibility, reliability and scalability.  

A device such as STATCOM has the advantage of 
providing solution in fast response time, thus providing 
dynamic voltage control in the systems [24]-[27]. When 
the STATCOM is applied in distribution system is called 
D-STATCOM (Distribution-STATCOM) and its 
configuration is the same. In this paper, in order to 
maximize the benefits of OLTC action and D-
STATCOM response, a new voltage control method is 
proposed. The main idea is to concentrate the response of 
each controller in its most suited working ranges and to 
consequently use each controller in the defined voltage 
range which corresponds to its merits. 

II. Modelling of DGs in Load Flow Studies 
The DG is noticed by two models when it is injected 

in networks: 
- Participating DGs (PV model). 
- Non-participating DGs (PQ model). 

II.1. DG Modelled as PV Node 

Some types of DGs which can be modelled as PV 
nodes, like micro turbines, fuel cells and so on. It has to 
be dealt with separately because it does not match the 
back/forward sweep algorithm [10]. The model is Eq. 
(1): 

푃 = −푃
푈 =   푈  (1)

II.2. DG Modelled as PQ Node 

This type of DGs, a compared with PQ type load, has 
opposite power flows. Therefore, there is nothing to 
handle but invert the sign of power when dealing with 
PQ type DGs, as Eq. (2) shows. 

In the distribution power flow calculation, the vast 
majority of nodes are PQ nodes [11]: 
 

푃 = −푃
푄 = −푄  (2)

III. Static Compensator 
III.1. Modeling of STATCOM 

The static synchronous compensator, or STATCOM, 
is a shunt connected FACTS device [21]-[22]. 

The configuration of STATCOM used in this paper is 
shown in Fig. 1. 

It generates a balanced set of three phase sinusoidal 
voltages at the fundamental frequency, with rapidly 
controllable amplitude and phase angle. This type of 
controller can be implemented using various topologies.  

However, the voltage-sourced inverter, using GTO 
thyristors in appropriate multi-phase circuit 
configurations, is presently considered the most practical 
for high power utility applications. A typical application 
of this type of controller is voltage support [12]. 

In addition to this, this controller has a coupling 
transformer and a dc capacitor. The control system can 
be designed to maintain the magnitude of the bus voltage 
constant by controlling the magnitude and/or phase shift 
of the VSC output voltage [13]. 

Few papers address the issue of how to model 
STATCOM for load flow calculation. It is traditionally 
modeled for power flow analysis as PV or PQ bus 
depending on its primary application. The active power is 
either set to zero (neglecting the StatCom losses) or 
calculated iteratively. 

In a load flow calculation, a STATCOM is typically 
treated as a shunt reactive power controller assuming that 
it can adjust its injected reactive power to control the 
voltage at the StatCom terminal bus. 

Fig. 2 depicts a STATCOM and the traditional simple 
model used in this paper for load flow calculation. In this 
model reactive power load at bus i (jQi), is combined 
with STATCOM reactive power output  jQcand therefore 
power varies as |Vi|. This model is essentially a PV bus 
with the STATCOM's active power output set to zero 
[14]. 

III.2. Modal Analysis 

The modal analysis technique utilized in this paper 
involves the computation of Eigenvalue and the 
associated eigenvectors of a reduced power system 
steady state Jacobian matrix, which retains the Q-V 
relationship in the network and participation factor for 
minimum Eigenvalue which identify weakest buses. 

By using the reduced Jacobian matrix, the relationship 
between the incremental change in bus voltage 
magnitude and incremental change in bus reactive power 
injection can be examined. 

 

 
 

Fig. 1. Configuration of STATCOM 
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Fig. 2. Model of STATCOM in load flow calculation 
 
Since voltage stability is essentially of a steady-state 

nature, therefore, static analysis can be effectively used 
to determine stability margins which show how close the 
current operation point of power system is to the voltage 
collapse point. Voltage stability is affected by both real 
and reactive load power. 

However, at each operating point real power (P) can 
be kept constant and evaluate voltage stability by 
considering the incremental relationship between reactive 
power (Q) and voltage magnitude (V). The effects of 
changes in system load or power transfer levels are taken 
into account by studying incremental relationship 
between (Q) and (V) at different operating conditions. 

As the power flow method is implemented for voltage 
stability analysis, the Jacobian matrix of solved load flow 
equations, by Newton-Raphson method, can be used. 

The linearized steady-state system power voltage 
equation is expressed as [15]: 
 

∆푃
∆푄 =

퐽 퐽
퐽 퐽

∆휃
∆푉  (3) 

 
where: 
ΔP = incremental change in bus real power. 
ΔQ= incremental change in bus reactive power. 
Δθ = incremental change in bus voltage angle. 
ΔV= incremental change in bus voltage magnitude. 

To express the relation between ΔQ and ΔV for a 
small change in real power, ΔP=0 can be assumed, this 
yields: 

∆푄 = 퐽 − 퐽 퐽 퐽 ∆푉 (4)
 

Rearrange Eq. (4), then: 
 

∆푉 =  퐽  ∆푄 (5)
 

where: 
퐽 = 퐽 − 퐽 퐽 퐽  (6)

 
JR is called the reduced Jacobian matrix of the system; 

it relates the bus voltage magnitude and reactive power 
injection. 

IV. Simulation Results 
In order to validate the proposed voltage regulation 

scheme, a distribution System is considered which is 
shown in Fig. 3. 

 
 

Fig. 3. The investigated system 
 
The system under study consists of a DG unit which is 

located at the end of the feeder where D-STATCOM also 
installed. The OLTC mechanism is installed on the 
secondary side of the HV/MV transformer (60/20 kV) 

The parameters of the investigated system are as 
follow:  
 The line and bus data are same as IEEE 10 bus 

distribution system. 
 Total loads of the feeder are 12.368 MW and 4.186 

MVAR. 
 Maximum power of DG unit (PDG)= 4 MW. 

In this paper, a worst case in the voltage regulation of 
the investigated system is simulated. The simulations are 
carried out by using a Newton–Raphson algorithm based 
load flow program written in MATLAB. 

Fig. 4 shows the voltage at the bus 10 as a function of 
demand of the load and power of DG unit. 

 

 
 

Fig. 4. Voltage at bus 10 with variations of demand of the load 
and power of DG 

 
We can see that the worst case of voltage rise is when 

DG generates its maximum power (PDG= 2.5 MW) and 
the demand of the load is minimal (20% of the nominal 
load) and that the worst case of voltage drop is when DG 
generates its minimum power (PDG= 0) and the demand 
of the load is maximal (100% of the nominal load). 

IV.1. Case 1 

The first test case is when DG generates its maximum 
power and the demand of the load is minimal (20% of the 
nominal load). Fig. 5 shows the profile of the voltage 
along the feeder in this situation. As the voltage rise at 
bus 10 is more than the permitted range of the voltage (± 
5%). The single action of OLTC cannot manage the 
voltage rise along the feeder. The single action of the 
OLTC leads to a voltage drop at the sending point of the 
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feeder (92% at bus 1) as in Fig. 6. Fig. 7 show that the D-
STATCOM controls the voltage of the regulated point by 
adapting the amount of absorbed reactive power. As long 
as the exchanged reactive power stays within the 
maximal limits, the voltage is regulated at the target 
voltage value. 

Fig. 8 shows that the proposed idea is capable of 
managing the extreme voltage rise at bus 10. 

As it can be seen, without any controller, the voltage 
rise at bus 10 is about 12% and based on the proposed 
idea, 5% of this voltage rise was managed by OLTC 
action and the rest of the voltage rise (7%) was 
compensated by D-STATCOM response. In this case, the 
absorbed reactive power of D-STATCOM is 1.3 MVAr 
(inductive mode). 

 

 
 

Fig. 5. Voltage profile of the system buses in the case 1 
without any controller 

 

 
 

Fig. 6. Voltage profile of the system buses in the case 1 
with single action of OLTC 

 

 
 

Fig. 7. Voltage at bus 10 in the case 1 with the variation of D-
STATCOM reactive power 

 
 

Fig. 8. Voltage profile of the system buses in the case 1 
with the proposed idea 

IV.2. Case 2 

The second worst case is considered when the injected 
power of DG is minimal (PDG= 0) and the demand of 
the load is maximal (100% of the nominal load). Fig. 9 
shows the profile of the voltage along the feeder in this 
situation. Like the previous case, the single action of 
OLTC Fig. 10 cannot effectively manage the voltage 
drop at bus 10 (more than 6%). 

Fig. 11 show that the D-STATCOM controls the 
voltage of the regulated point by adapting the amount of 
injected reactive power. As long as the exchanged 
reactive power stays within the minimal limits, the 
voltage is regulated at the target voltage value. 

 

 
 

Fig. 9. Voltage profile of the system buses in the case 2 
without any controller 

 

 
 

Fig. 10. Voltage profile of the system buses in the case 2 
with single action of OLTC 

1 2 3 4 5 6 7 8 9 10
0.85

0.9

0.95

1

1.05

1.1

1.15

Bus

Vo
lta

ge
 (p

.u
)  

Lower limit

Upper limit

1 2 3 4 5 6 7 8 9 10
0.85

0.9

0.95

1

1.05

1.1

1.15

Bus

Vo
lta

ge
 (p

.u
)  

Lower limit

Upper limit

0  0.2 0.4 0.6 0.8 1  1.2 1.4
1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

Qsh  [MVAR] 

V
ol

ta
ge

 (p
.u

)  

Upper limit

1 2 3 4 5 6 7 8 9 10
0.85

0.9

0.95

1

1.05

1.1

1.15

Bus

Vo
lta

ge
 (p

.u
)  

Lower limit

Upper limit

1 2 3 4 5 6 7 8 9 10

0.85

0.9

0.95

1

1.05

1.1

Bus

V
ol

ta
ge

 (p
.u

)  

Lower limit

Upper limit

1 2 3 4 5 6 7 8 9 10

0.85

0.9

0.95

1

1.05

1.1

Bus

V
ol

ta
ge

 (p
.u

)  

Lower limit

Upper limit



 
Y. Bot, A. Allali 

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved                                               International Review of Automatic Control, Vol. 8, N. 2 

138 

 
 

Fig. 11. Voltage at bus 10 in the case 2 with the variation 
of D-STATCOM reactive power 

 
The proposed idea with the combination of OLTC 

action and D-STATCOM response is able to keep the 
voltage of all buses within the predefined limits Fig. 12.  

In this case, the reactive power of D-STATCOM is 
equal to -2.1 MVAr (capacitive mode). 

Based on the simulation results, it can be concluded 
that the proposed method is able to keep the voltage of 
the all buses within the limits. 

 

 
 

Fig. 12. Voltage profile of the system buses in the case 2 
with the proposed idea 

V. Conclusion 
In this paper, a new idea for the voltage regulation of 

radial distribution systems with DG unit at the 
transformer bus was presented. The proposed idea was 
based on the combination of two different control 
methods which are OLTC action and static compensator.  

The idea was to use the OLTC action in the predefined 
range (based on the permitted range of voltage) and 
allow D-STATCOM to manage the rest of the voltage 
violations. Simulation results revealed that the proposed 
method enables us to efficiently manage the voltage 
control problem of a radial MV distribution system in the 
worst working conditions. 

Moreover, as the D-STATCOM is only used in the 
extreme voltage conditions (when OLTC cannot work 
anymore), it does not considerably increase network 
losses. In future research, a practical evaluation and the 
cost of implementation of the proposed method will be 
investigated. 
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Abstract – This research describes the dynamically mathematical design and modelling of 
autonomous control of all-terrain vehicles (ATV) using system identification technique based on 
pitch and yaw stability. The modelling of ATV using dynamic mathematical method based on 
single track model which the left and right tires for both front and rear have the same 
characteristics. 
The main difficulty of the ATV control is the steering control which could not rotate easily and 
need higher forces to control the ATV movement manually. The movement is very limited when 
driving the ATV manually, since it requires a strong thrust to move the steering. Therefore, the 
design of wireless control system is use to solve the problem which could control the rotation 
angle of 45° to the left and right with precision, and accuracy on the steering control. First, the 
modelling of ATV will be derived using Newtonian formulation, and also design the controller of 
the ATV with accordance to the path-following planning motion method. 
The results for stability of ATV is validate using a model generated by MATLAB system 
identification toolbox. 
The best fit for yaw estimation is 92.7% and whereas pitch estimation is 69.76% respectively. As a 
conclusion, the yaw estimation shows that the ATV achieved its stability at the angle 45° and 
verify simulated of yaw axis part. Copyright © 2015 Praise Worthy Prize S.r.l. - All rights 
reserved. 
 
Keywords: Autonomous Control, All-Terrain Vehicles, System Identification, Yaw and Pitch 

Stability 
 
 

Nomenclature 
퐾  Steering ratio; ratio between the turn of the 

steering wheel and the angular displacement 
of the wheel 

C1 or 퐶  Cornering stiffness front 
C2 or 퐶  Cornering stiffness rear 
I Moment of inertia about vertical axis 
β Sideslip angle 
ay Lateral acceleration 
δ Angle steering 
a Distance of front axle to Centre gravity  
b Distance of rear axle to Centre gravity 
Iz Yaw of inertia 
lf , lr   Distances from the centre of gravity to the 

front and rear axles respectively 
FF Lateral tire force front 
FR Lateral tire force rear 
U or u Velocity forward  
r Yaw of velocity 
M or m Mass 
N Rotational Speed 

I. Introduction 
Nowadays, constructions workers have discovered 

that the usage of All-Terrain Vehicle (ATV) gives much 
benefit to their work field which dedicated to huge 
driveability on irregular ground track as well as in paved 
road. ATV is one of the vehicle type that much lighter 
than other four-wheel vehicles and it is popular among 
the expert drivers. 

This vehicle is also known as a quad bike or four-
wheeler or can be defined as a vehicle that travels on low 
pressure tires. When taking corners, it is more 
challenging than rugged four-wheel vehicle since the 
current ATV’s stabilizing mode is more difficult. ATV 
performance keep improving for the design and materials 
used, so as the performance. Hence, better knowledge is 
needed to improve the characteristics of the ATV 
parameters. The aim of this research is to improve the 
dynamic mathematical modelling of the ATV and also to 
design the controller for the ATV [1]-[28]. 

The modelling of ATV used based on the single track 
model or also known as Bicycle model will explained in 
the next section. 
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At the first stage, the controller will be designed using 
a wireless controller and aimed to obtain the performance 
improvement in terms of stability and workability. 
Wireless controller system design needs some knowledge 
about the fundamental of wireless system such as 
transmitter/receiver radio controller suitable for an ATV. 
Wireless remote control technology normally use for 
wireless control, automation and telemetry in a variety of 
applications industry. Anything that can be changed for 
examples: on/off, up/down or that can send and receive 
data; can be wireless. Remote control technology is the 
global leader in wireless solutions industry, provides a 
wide range of uses, the use are more focused in 
engineering and systems integration capabilities [1]-[3]. 
In the mathematical modelling design, it involves a 
description of the relation among inputs to the process, 
its state variables, and its output. This description is 
called the model of the system. The model can be 
represented as a set of transfer functions for linear time 
invariant systems or other relationships for non-linear or 
time variant systems [4]. Modelling of complex systems 
may be very difficult task. 

II. ATV Overview 
Before we go further about the mathematical 

modelling of the ATV, the overview of ATV part will be 
discussed to understand the operations of ATV system. 
Fig. 1 shows the overview of ATV such as engine part, 
brake system, power terrain, steering system (handle 
bar), and also tires. 

 

 
 

Fig. 1. ATV Components 
 

The path-following route test that are selected to 
conduct the experiment in this project are climb u and 
lane change course according to paper [5] and [6] 
whereby the test procedure and track test is presented in 
next section. Then, the design controller for the tracking 
path-following route is by using wireless controller since 
several researches in paper [7]-[10] that wireless 
controller make better in term of stability controllable 
and dynamic performance. This controller will be further 
discussed on another section. In addition, the technique 
of system identification shall be used to get the best fit of 
the result as proposed in paper [11]-[14]. The system 
identification technique is been exercised for the 

validation of the result as to estimate the movement of 
the ATV whether it is follow the path-following planning 
that has been conducted when the data is collected. 
Besides, the noise and disturbance in result section need 
to be screened as to get a better result.  

Thus, to filter the noise, complementary filter is used 
as proposed in paper [15] and [16] because of it works 
for the angle estimate is responsive and accurate and 
much easier to explain the theory rather than the 
unscented and extended kalman filter. 

III. Methodology 
Fig. 2 shows the overall works on this research while 

Fig. 3 shows the methodology of the research. The 
performance of ATV will be tested through the 
experiment will be conducted for this research. The 
physical measurement will be conducted to measure the 
parameters including mass, centre of mass and moments 
of inertia are presented in the results as shown in Fig. 2. 
Besides, the derivation of mathematical modelling of the 
ATV also covered in this paper as shown in next section.  

 

 
 

Fig. 2. Overall works on this research 
 

 
 

Fig. 3. Methodology of the research 
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The experiments and the procedures for the path-
following planning track also will be elaborate in the 
paper. 

IV. Mathematical Modeling of ATV 
The single track model is a simple vehicle model 

which always is used to model 4Ws as shown in Fig. 4.  
This model represents the left and right tire’s 

characteristics have an equal tire characteristic of a two-
wheel in plane vehicle with 2-degrees of freedom; yaw 
motion and lateral displacement [17]-[19]. Below are the 
assumptions applied on the bicycle model as shown in 
Fig. 5: 
1. Heading velocity is constant, u (≈V).  
2. No slope and body roll. 
3. Steering input is constant. 
4. Lateral accelerations (4 m/s2). 
5. Sideslip angle (β) is assumed small. 

So, the equation of motion of the bicycle model is 
derive as below. Reference from Y-axis: 
 

푚(푣̇ + 푢푟) = 퐹 + 퐹  (1)
 

퐼푟̇ = 푎퐹 − 푏퐹  (2)
 

 
 

Fig. 4. Top view: Single track part will take at middle 
vertical X-axis as reference modelling 

 

 
 

Fig. 5. The reference modelling is analyse by add some parameter 
and is known as “Bicycle Model” 

The force acting on tire: 
 

퐹 = 퐶 훼  (3)
 

퐹 = 퐶 훼  (4)
 

where: 

훼 =  +훿 −  
1
푢

(푣 + 푎푟) 

  훼 =  −  
1
푢

(푣 + 푏푟) 

퐶  =  
푎
푙

  , 퐶 =  
푏
푙
 

(5) 

 
To derived the steering angle, δ: 

Substitute of 퐹 and 퐹  in Eqs. (1) and (2): 
 

푚(푣̇ + 푢푟) = −  
푣
푢
퐶 +  퐶 + 

+ 
푟
푢
푏퐶 − 푎퐶 +  훿퐶  

(6)

 
퐼푟̇ =  −

푟
푢
푎 퐶 +  푏 퐶 + 

−  
푣
푢
푎퐶 − 푏퐶 + 푎훿퐶  

(7)

 
Combined of (6) and (7) to eliminate v: 
 
푚푢퐼푟̈ + 퐼 퐶 +  퐶 + 푚 푎 퐶 + 푏 퐶 푟̇ + 

+ 
1
푢
퐶 퐶 푙 − 푚푢 푎퐶 − 푏퐶 푟 = 

= 푚푢푎퐶 훿̇ + 퐶 퐶 푙훿 

(8)

 
The circle test conditions: 

 
푟̈ = 0    푟̇ = 0   훿̇ = 0 (9)

 
then: 

 
푟
푢
퐶 퐶 푙 − 푚푢 푎퐶 − 푏퐶 =  퐶 퐶 푙훿 (10)

 
and from (10), the δ is derived: 
 

+훿 =  
퐿
푅
−
푚푣
푅푙

(
푎
퐶
−
푏
퐶

) (11)

 

푎 =  
푣
푅

 (12)

 
By replacing ay  in (12): 
 

훿 =  
퐿
푅
−
푚푎
푙

(
푎
퐶
−
푏
퐶

) (13) 

 
The equation of β is derived from the front slip angle: 
 

+훽 =  −
푣
푢

 (14)
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훼 =  −
1
푢

(푣 − 푏푟) =  +훽 +  
푏푟
푢

 (15)

 

+훽 = −
푏
푟

+ 훼  (16)

 
and from the Eq. (3): 

 

훽 = −
푏
푟

+
훼푚푎
퐶 퐿

 (17)

 
Equations (13) and (17) show +β and +δ linearly 

dependent on lateral acceleration ay.  
To describe the dynamic behaviour of the ATV 

model, a state space model is used. The state space 
model can be written: 

 
푥̇ = 퐴푥 + 퐵푢 (18)

 
푦 = 퐶푥 + 퐷푢 (19)

 
where: 

 
푥 = 푣

푟 , 푦 = 푎
푟 , 푢 = 훿 

 
and: 

 

퐴 =  −

퐶 +  퐶
푚푢

푢 +
푎퐶 −  푏퐶

푚푢
푎퐶 −  푏퐶

퐼 푢
푎 퐶 +  푏 퐶

푢퐼

 

 

퐵 =  

퐶
푚
푎퐶
퐼

 

 

퐶 =  −  
퐶 +  퐶
푚푢

푎퐶 −  푏퐶
푚푢

0 −1
;  퐷 =

퐶
푚
0

 

(20)

 
ATV configurations 

In the process to design a wireless controller, there 
were 3 different parts have dissimilar functions and they 
contribute to the control differently. The wireless 
controller includes steering system (handle bar), 
switching system and brake system as shown in Fig. 6. 
 
System Integration with sensor 

The measured data for every test is based on the 
suitable selection of the sensor. The system integration of 
ATV with the sensor will be carried out by some 
experiment. However, the proposal for sensor’s selection 
that shall be used in this project are accelerometer and 
gyro sensor.  

Thus, in order to integrate the sensor at the same time 
while conduct the experiment, the 3-DOF of inertial 
measurement unit (IMU) is selected as shown in Fig. 7. 

 
 

Fig. 6. Configuration of ATV modification 
 

 
 

Fig. 7. 3-DOF IMU sensors 
 
The function of IMU is by detecting the rate of 

acceleration, as well as the changes on rotational 
attributes such as pitch, roll and yaw [20]. 

Then, the data is fed into a computer to calculate the 
current speed and position given a known initial speed 
and position [21]. For the 3- DOF IMU, the sensors 
configurations is one gyroscope that measures yaw with 
two accelerometer. Since, the project is focus on linear 
single track model, the pitch and roll of the vehicle is 
ignored. 

 
 

Complementary Filter 
When integration with IMU sensor, the measured data 

is produce noise and disturbance. Thus, the 
complementary filter is used as shown in Fig. 8. 

To design this filter, firstly, choose the time constant 
that is used as to calculate filter coefficients. By selecting 
the time constant, it can adjust the response. Besides, the 
time constant is the sample period which is simply the 
reciprocal of the sampling frequency and decided by 
ourselves. Set up the Complementary Filter as follows 
[22]–[23]: 

 
y = a × y + (1 - a) × x (21)

 
whereby: 
 

a = time constant / (time constant + sample period). 
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Fig. 8. Example of set-up complementary filter 
 

The Validity and Reliability of Experimental Set Up 
In this experimental set up, three procedures are 

introduced as to analysis the ATV whether it follows the 
path-following planning and then validate the result 
using system identification method. Besides that in order 
to get the valid and reliability of the data several method 
are selected. Table I shows the parameter for ATV based 
on measurement setting as shown in Fig. 9. 

The data will be collected using IMU sensor via 
Arduino Uno microcontroller as shown in Fig. 10. 

 
TABLE I 

THE FIRST PARAMETER OF ATV 
First Parameter Measured data 

Reading 1 Reading 2 Reading 3 Mean 
Mass of ATV (kg) 90.1 90.3 90.2 90.2 
Track length (m) 0.750 0.751 0.762 0.754 

Wheelbase length (m) 0.880 0.889 0.882 0.884 
Height of ATV (m) 0.700 0.720 0.720 0.713 

 

 
 

Fig. 9. Measurement of ATV 
 

 
 

Fig. 10. Connection of IMU sensor SD card of Arduino Uno 

 
 

Fig. 11. ATV testing for climb the obstacle 
 

 
 

Fig. 12. ATV testing for lane change course track 
 

 
 

Fig. 13. The set up for the track 
 

 
 

Fig. 14. Set up the lane change course track 
 

Fig. 11 and Fig. 12 above show the experiment set up 
for climb the obstacle and the lane change course track, 
while Fig. 13 and Fig. 14 show the measurement for 
experiments set up. 

From the mean value of first parameter  based on 
Table I, the cornering stiffness and moment of inertia at 
x, y and z- axis with center of gravity can be calculated 
and determined as follows. 
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Stiffness Formula: 
 

C = (mass,kg) ×  × (0.50) ×  ×  (22)
 

Moment inertia Formulae: 
 

I = × [mass, kg] × (lengt, m + lengt, m ) (23)
 
1. Stiffness for front wheel: 

 
90.2  ×  × 0.50 ×  ×  =  248.07 (N /rad) 

 
2. Stiffness for rear wheel: 
 

90.2  ×  × 0.50 ×  ×  =  165.38 (N /rad) 
 
3. Moment inertia at x-axis: 
 

퐼 =  [90.2](0.754 + 0.713 ) = 8.09 (kg m4) 
 
4. Moment inertia at y-axis: 
 

퐼 = [90.2](0.884 + 0.713 )  = 9.695 (kg m4) 
 
5. Moment inertia at z-axis: 
 

퐼 = [90.2](0.884 + 0.754 ) = 10.15 (kg m4) 
 

6. Centre of gravity from: 
 

0.738(푆   ) = 1.155( 푆   ) (24)
 

푆 +  푆   =  0.884  (25)
 

From (4.1) S1  is as subject matter; 
 

S2 = 1.565( S2) (26)
 
Insert (4. 3) into (4.2): 
 

S1 = 0.3446 m 

V. Result 
MATLAB State-Space Model 

Fig. 15 is the MATLAB/Simulink block diagram for 
open loop testing for yaw angle based on model as in Eq. 
(20) will obtained using system identification toolbox 
[24]-[26]. 

The data collected used for system identification based 
on data collected from IMU sensor on Arduino Uno 
microcontroller. 

The Fig. 15 shows that the simulation of open loop 
system for the mathematical modelling of the ATV based 
on the single track model. By using Eq. (20) and result 
for the model state-space for the yawas shown in (27): 

A = - 8.99 1.246
50.97 16.96   B = 3.32

44.5  
 

C = - 8.99 0.6676
0 −1    D = 3.316

0  
(27)

 
After obtained the parameter and the state space 

model of ATV in Eq. (27), the simulation from the Fig. 
15 is carried out. The result for the simulated state space 
model are shown in Figs. 16-18. Fig. 16, Fig. 17 and Fig. 
18 show the result of open-loop system for the state-
space model of yawing.  

The output graph shows positive and negative of sine 
wave which are represented the yawing right and yawing 
left. However, there is no slip on rear tire because the 
ATV only steered at front wheel only. 

This simulated result of yawing is show as the normal 
steering control at an angle approximately 45° whereas it 
considered reach point the stabilization when the ATV 
are driven to the regular turning surface. 

The Fig. 19 shows that the simulation of open loop 
system for the mathematical modelling of the ATV based 
on the single track model. 

 

 
 

Fig. 15. MATLAB/Simulink block diagram for yaw 
 

 
 

Fig. 16. Slip front tire 
 

 
 

Fig. 17. Slip rear tire 
 

 
 

Fig. 18. Steering angle (yawing) at z-axis 
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Fig. 19. Block diagram for pitch 
 

By using Eq. (20) and the result forthe ATV model in 
state-space for the pitch as shown in (28): 
 

A = - 8.99 1.246
86.41 28.75  

 
B = 3.32

75.44  
 

C = - 8.99 0.6676
0 −1  

 
D = 3.316

0  

(28)

 
After obtained the parameter and the state space ATV 

model, the simulation from the Fig. 19 is carried out.  
The result for the simulated state space model are 

shown in Fig. 20. From the Fig. 20 it shows the result of 
open-loop system for the state-space model of pitching. It 
indicates that the ATV is driven to the track which are 
approximately at 0.40 m height with 45° angle of slopes. 

The graph output shows positive and negative of sine 
wave which are represent the pitching up and pitching 
down moment. This simulated result of pitch angles is 
shows as the normal moment effect whereas it 
considered as reach point the stabilization when the ATV 
are driven to the regular slope surface. 

Fig. 21 shows the result of yaw stability using excel 
software while Fig. 22 shows the results of pitching 
stability. Fig. 23 shows the results of acceleration of 
ATV for yaw and pitch movement. 

Fig. 24 shows the input and output signal using system 
identification toolbox based on data plotted to excel 
software and Fig. 25 is the best fit in system 
identification toolbox where 69.76 % best fit.  

 

 
 

Fig. 20. The climb slope (pitching) at y-axis 

 
 

Fig. 21. Yaw stability 
 

 
 

Fig. 22. Pitch stability 
 

 
 

Fig. 23. Acceleration for yaw and pitch movement 
 

 
 

Fig. 24. Input and Output signals 
 

 
 

Fig. 25. The best fit in system identification toolbox 
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VI. Conclusion 
The mathematical modelling of the ATV based on the 

single track system or also known as “bicycle model” has 
been described. The derivation of the mathematical 
modelling is in the form of state space from measuring 
parameter of the ATV. 

Then, applied to MATLAB/Simulink to simulate the 
system based on open loop system. The step response of 
graph, it shows that the controller is needed to be design 
in order to improve the rise time and steady state error.  

The stability of ATV based on the path -following 
planning are analyzed based on the yawing and pitching 
motion. In this experiment, the IMU sensor is used to 
collect the data and the SD card is used for data logger 
for this measured data. As a result, from this collected 
data, the analysis will be done by plotting the graph using 
Microsoft excel software.  

Then, the result measured input and output data of 
track test analysis will be validated by using system 
identification method of time response. This is to 
estimate the value of the vehicle dynamic model of ATV 
based on the track test and get the best fits of the data.  

From this data, the result will give more accurately the 
result about the motion of ATV. The single track model 
that has been proposed just make a linear part of the 
vehicle’sperformance only. It means that the stability of 
ATV is only cover when it been tested on the flat 
surface. Thus, the body roll of ATV is not considered. In 
order to test the stability irregular surface, the modelling 
of dynamic model of ATV cannot be implemented or 
predict the movement of a complex non-linear system.  

Thus, to model the non-linear system, the new 
modelling approach is needed. 

For the design of wireless controller also has the 
limitation. Firstly, the design of brake system cannot be 
done because of lack of force when use the mechanism 
of the brake that we made, the force that support the 
system is not enough, therefore, we need to add some 
equipment which is high torque and give high pressure to 
brake the cylinder wall, and to afford that also need a 
high of cost. 

Second, the backward move with wireless stick 
movement design cannot be done, this is because, if we 
want to design for backward move, we need to add some 
motors with high-power torque, and with good reverse 
biased motor engine. For now, the solutions we used is 
only at throttle high and low puller to control the start 
and stop of the ATV movement, with lower the timing of 
ATV engine which is can low the speed of engine. 

In next research, the project will be continue on how 
to integrate the IMU sensor with the hardware (ATV) by 
using X-Bee communication as to get the real time 
implementation of stability of ATV which can become as 
navigation system of ATV. 

Secondly, the research of brake system need to be 
continue, whether make the design of the disc braking 
system, brake system wireless to improve the brake 
system that already existing. 
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Model Identification of an Underwater Remotely Operated Vehicle 
Using System Identification Approach Based on NNPC 
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Arfah Syahida Mohd Nor, Mohd Khairi Mohd Zambri 

 
 
Abstract – This paper described the development of modeling of an unmanned underwater 
vehicle (UUV) using system identification toolbox based on neural network model. The set of data 
based on neural network model generated by open-loop model of UUV and the input-output data 
produced using neural network predictive control technique. The model of UUV is an underwater 
Remotely Operated Vehicle (ROV) will be used in this study. Open-loop model of ROV created 
using system identification technique with implemented in real time experiment for open-loop 
system. Two data will be used such as the input and output neural network data for validation and 
training for infer a model of the ROV using system identification toolbox. The data re-generated 
using graph digitizer software. The accuracy of this software almost 90%. Then, the model 
obtained in this system will be controlled using conventional PID controller in MATLAB Simulink. 
The comparison between two models from different techniques of the ROV will be described. When 
the number of samples used in this project reduced, the best fit will be increased. A model 
obtained based on neural network model is acceptable to use in simulation and will be improved 
the best fit when reduced number of samples. Copyright © 2015 Praise Worthy Prize S.r.l. - All 
rights reserved. 
 
Keywords: Neural Network Predictive Control, Neural Network Model, Graph Digitizer, System 

Identification 
 
 

I. Introduction 
Neural Network Predictive Control (NNPC) is one of 

intelligent controller that used to control the movement 
of underwater Remotely Operated Vehicle (ROV) [1]-
[14]. In NNPC, the input-output plant data will be 
generated based on Neural Network Model (NNM). 

The produced input-output data using open loop ROV 
model that was developed by Underwater Technology 
Research Group (UTeRG) [1], [2]. The NNPC reported 
used in [3] to control the Deep Submergence Rescue 
Vehicle (DSRV). Based on [3], the NNPC gives the best 
system response compared other controller (e.g PID 
controller, PD controller, and FLC controller). 

But the time execution will be longer than others. Also 
stated to implement this controller to real time system 
more complicated programming also needed higher 
microprocessor. In [4], [5] used the DSRV model to 
design an intelligent controller that called single input 
fuzzy logic controller. This paper will be introduced one 
new techniques to generate a model of ROV based on 
NNM (training data) in NNPC toolbox. This technique is 
a novel and no reported to any published paper, and it is 
needed to use another techniques/software to re-
generated data from graph obtained in NNPC. 

The Graph Digitizer software will be used to re-
generate data and then will be used to infer a model using 
system identification toolbox in MATLAB. 

Other method can be used such as symbiosis in 
MATALB and origin software to re-generated data. The 
advantages of this digitizer software is easy and simple to 
use. Moreover, the accuracy of this software is better.  

Then, the data obtained used to infer a model using 
system identification will be controlled using simple 
conventional controller using MATLAB software. 

The conventional PID controller will be used to 
control this UUV system. The focused on this project is 
set to depth control. As stated in [6], [7], the depth 
control for ROV is needed to avoid any damage to both 
to the ROV and the environment such as operated in 
cluttered environment. For depth control the overshoot of 
the system response will be priority of the system. 

In this paper a model obtained from [8] will be used to 
make a comparison between a models generated by 
NNM. The comparison between model generated by real 
time experiment and neural network forecasting data will 
be described in this paper. 

At first trial, the both PID controller will be used same 
parameter to control both models. Then, the both PID 
controller will be tune to better performances of system 
response. The model of ROV was developed by UTeRG 
that called UTeRG ROV 1. Based on [8] the model of 
ROV developed using system identification technique. 

UTeRG ROV 1 is the earlier model of ROV that has 
been built to in order to infer a model using system 
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identification technique as shown in Fig. 1. This ROV 
can be classified as observation class ROV.  

This model is consists of 4 thrusters that allow this 
ROV to move in 4 DOF (degree of freedom). 

The dimension for this model is 0.3m of length, 0.6m 
of width and 0.45m of height. The overall weight for this 
model is 18 kg and designed as open-frame model. It 
body are made of aluminum for its frame and using PVC 
for its pressure hull. 

 

 
 

Fig. 1. UTeRG ROV 1[9] 

II. Neural Network Model (NNM) 
The design procedure utilizes MATLAB® Neural 

Network Predictive Control toolbox and was 
implemented using SIMULINK®. A neural network was 
designed to be used as the predictive model [9]. 

The objective of the controller is to maintain the depth 
of ROV by control the thrusters system. 

Fig. 2(a) shows the window for designing the NNPC 
while Fig. 2(b) shows the plant identification for training 
data and Fig. 2(c) shows the training parameters. Based 
on training data, numbers of samples can be adjust and 
the training samples (input-output plant) shown in Fig. 3. 

From this Fig. 3, it is difficult and take time to re-
generated using digitizer software. Using Train Network 
in training parameter as shown in Fig. 2(c), the input 
graph and NN graph for training and validation 
respectively as shown in Figs. 4, 5. The two number of 
samples will be selected that is 5000 and 1000 samples.  

Based in Fig. 6, the graph will be convert to data using 
Digitizer software. This software will useful to re-
generate data from graph. The numbers of data up to 
user. It can make a detail plot of graph. Then the data can 
be re-plotted using excel or MATLAB as shown in Fig. 
7. Figures 8 show the comparison between data using 
excel and neural network model. The dark blue is the 
data from excel while the blur blue is the neural network 
model. Based on this Figure shows that the error between 
both model 10%. 

The accuracy of this comparison is about 90%. So, 
digitizer software valid to used to obtained data from 
fixed graph. 

Once, data obtained the system identification toolbox 
in MATLAB will be used to infer a model. The best fits 
obtained for this system is 40.93 and 86.06 for 5000 and 
1000 samples respectively and yields the transfer 
function as in Eqs. (1) and (2). 

 
(a) Neural Network Predictive control 

 

 
(b) Training Data 

 

 
(c) Training Parameter 

 
Figs. 2. Neural Network Predictive Window 

 

 
 

Fig. 3. Input-Output plant 
 

The Simulink plant model based on open-loop model 
ROV generated by system identification technique as 
shown in Fig. 10. Transfer function state space technique 
yields: 

 
3 2

4 736 3 749
2 28 2 07 0 07178

. s .
s . s . s .


  

 (1) 

 

 
3 2

1 32 0 89
3 495 3 51 0 013

. s .
s . s . s .


  

 (2) 



 
Mohd Shahrieel Mohd Aras et al. 

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved                                               International Review of Automatic Control, Vol. 8, N. 2 

151 

Based on Eq. (1) convert to state space matrix: 
 

 

2 28 2 07 0 07178
1 0 0
0 1 0

1
0 0 4 736 3 749 0
0

. . .
A

B ; C . . ; D

   
   
  
 
    
  

 

 
Based on Eq. (1) convert to state space matrix: 

 

 

3 495 3 51 0 013
1 0 0
0 1 0

1
0 0 1 32 0 89 0
0

. . .
A

B ; C . . ; D

  
   
  
 
    
  

 

 
The both model are control obtained from system 

identification technique will be analyse in terms of 
controllability and observability and also asymptotically 
stable. Based on state space matrices, the system is both 
controllable and observable because the system has a 
rank of 3. This system is asymptotically stable when all 
eigenvalues of A have negative real parts. Fig. 10 shows 
the Simulink of the ROV based on different model using 
PID controller.  

 

 
(a) Training data 

 

 
(b) Validation data 

 
Figs. 4. Validation data and Training Data for NN 

Predictive Control using 5000 samples 

 
(a) Training data 

 

 
(b) Validation data 

 
Figs. 5. Validation data and Training Data for 

NN Predictive Control using 1000 samples 
 

 
 

Fig. 6. GetData Graph Digitizer Software 
 

Fig. 11(a) shows the system response of depth control 
between two models of the ROV. 

Fig. 11(b) shows the system response with different 
set point. Model 1 is based on neural network forecasting 
technique while model 2 is based on system 
identification technique. 

From this Figure shows the model 2 based on system 
identification technique better than Model 1 based on 
neural network forecasting technique. But the both model 
can be used to study a controller design for the future. 

Fig. 11(c) the system response of depth control for 
1000 samples model. 

The response for 1000 samples is not smooth and 
higher the steady state error. The next recommendation is 
to design an intelligent controller such as using Fuzzy 
Logic Controller. 
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(a) 

 
(b)

 
Figs. 7. Plot output data using Excel based 

on Digitizer software 
 

 
(a) 

 
(b)

 
Figs. 8. Comparison between Data using Excel 

and Neural Network 
 

 
(a) 

 
(b) 

 
Figs. 9. The best fits 
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Fig. 10. Simulation for ROV depth control between two models 
 

 
(a) 5000 samples 

 
(b) 5000 Samples with different set point 

 
(c) 1000 samples 

 
Figs. 11. System response for depth control of the ROV 

III. Conclusion 
The modeling of an underwater remotely operated 

vehicle using system identification toolbox based on 
neural network forecasting data is successfully. The set 
of data forecast based on open loop model of ROV and 
the input-output data are generated using neural network 
predictive control technique using Digitizer software. 

The data then been used inside the MATLAB via 
system identification toolbox to come out the system 
modeling for the ROV. The modeling is done when the 
system identification infer a transfer function model and 
the controller for the system is designed based on a 
model obtained by using simple conventional PID 
controller. The PID controller can be used to control this 
system with good performances. 
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Robust Controller Design for T1DM Individualized Model: 
Gain-Scheduling Approach 

 
 

A. Ilka, I. Ottinger, T. Ludwig, M. Tárník, V. Veselý, E. Miklovičová, J. Murgaš 
 
 
Abstract – This paper deals with the robust gain-scheduled controller design for individualized 
type 1 diabetes mellitus (T1DM) subject model. The controller is designed using LPV model 
created from T1DM minimal model with two additional subsystems - absorption of digested 
carbohydrates and subcutaneous insulin absorption. Data collected from continuous glucose 
monitoring with the help of pharmacodynamics and pharmacokinetics characteristics were used 
for model identification. The closed-loop stability and cost for all scheduled parameters is 
guaranteed by the controller design approach. The benefits of the presented approach are shown 
in the simulation results. Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: LPV System, Robust Controller, Gain-Scheduling, Output Feedback, Quadratic 

Stability, Type 1 Diabetes Mellitus Model 
 
 

Nomenclature 
G Glucose concentration 
I Plasma insulin concentration 
VI Distribution volume of plasma insulin 
VG Glucose distribution volume per kilogram 
SG Glucose rate constant 
SI Insulin sensitivity index 
TI Time constant 
kI Decay rate of insulin in plasma 
Ra Rate of appearance of glucose in plasma 
D Amount of ingested carbohydrates 
AG Carbohydrate bioavailability 
δ Dirac impulse approximation 
v Subcutaneous insulin infusion rate 
x State variable 
y System output 
u Controller output 
w Reference value 
e Control error 
θ Scheduling parameter 
Be Bellman-Lyapunov function 
V Lyapunov function 
J Cost function 
K Gain matrix 

I. Introduction 
Computer modeling of type 1 diabetes mellitus 

(T1DM) has attracted considerable attention in the past 
decade. Patients with T1DM suffer from high levels of 
glucose concentration due to defective insulin secretion.  

The lack of insulin is preventing glucose uptake and 
utilisation by cells. 

Long-term high glucose concentration results in 
several health complications. 

The most common intensified insulin therapy 
nowadays is based on manual exogenous insulin dosing 
to either keep the level of basal insulin or to suppress 
glycemic excursions after a meal. The patient needs to 
take several fingerstick blood glucose measurements a 
day and make decisions on insulin doses. A closed-loop 
blood glucose control would dramatically improve the 
life of T1DM subjects. 

Despite the fast development of insulin pumps and 
continuous glucose measurement systems, a fully 
autonomous control of glycemia has not been introduced 
in a commercially available device yet. 

The robust control theory is well established for linear 
systems but almost all real processes are more or less 
nonlinear. If the plant operating region is small, one can 
use the robust control approaches to design a linear 
robust controller where the nonlinearities are treated as 
model uncertainties. However, for real nonlinear 
processes, where the operating region is large, the above 
mentioned controller synthesis is inapplicable. For this 
reason the controller design for nonlinear systems is 
nowadays a very determinative and important field of 
research. 

Gain-scheduling is one of the most common used 
controller design approaches for nonlinear systems and 
has a wide range of use in industrial applications. Many 
of the early articles were associated with flight control 
[1] and aerospace [2]. Then, gradually, this approach has 
been used almost everywhere in control engineering, 
which was greatly helped with the introduction of LPV 
systems. Linear parameter-varying (LPV) systems are 
time-varying plants whose state space matrices are fixed 
functions of some vector of varying parameters 휃(푡).  

They were introduced first by Jeff S. Shamma in 1988 
to model gain-scheduling. Today the LPV paradigm has 
become a standard formalism in systems and controls 
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with lot of researches and articles devoted to analysis, 
controller design and system identification of these 
models [3]. 

The main motivation of our paper were our previous 
results in gain-scheduling [4] - [8] and the results from 
T1DM research [9], [10] and [11]. In this paper a novel 
robust discrete gain-scheduling controller design for 
Bergman’s minimal model of glucose-insulin dynamics 
coupled with insulin and carbohydrates absorption 
subsystems is proposed. 

Our notations are standard, 퐷 ∈ ℝ ×  denotes the set 
of real 푚 × 푛 matrices. 퐼  is an 푚 × 푚 identity matrix 
and 푍  denotes a zero matrix. If the size can be 
determined from the context, we will omit the subscript. 
푃 > 0 (푃 ≥ 0) is a real symmetric, positive definite 
(semidefinite) matrix. 

Organisation of the paper is following. Section 2 
includes problem formulation and some preliminaries are 
given. In Section 3 sufficient stability conditions in the 
form of BMI and/or LMI are given for the design of a 
robust discrete gain-scheduled controller. In Section 4 the 
obtained results are illustrated on the T1DM model. 

II. Problem Formulation and 
Preliminaries 

In this section we briefly describe the mathematical 
model of a T1DM subject, which was based on 
Bergman's minimal model of insulin-glucose interaction 
[12]. Later in this work the model will be used as a base 
for controller design and as a patient simulator for 
verification of the controller. 

Our aim was to adjust the parameters of the proposed 
model so that the output of the model fits the continuous 
glucose monitoring (CGM) data of a particular T1DM 
subject. For identification of specific model parameters 
we used pharmacokinetics (PK) and pharmacodynamics 
(PD) measurements (as published in [13], [14]) of the 
particular insulin prescribed to the patient. 

The information about ingested carbohydrates was 
also recorded during data acquisition. 

II.1. T1DM Model 

Bergman's minimal model consists of two differential 
equations in the form: 

 
       2 2 I bX t p X t p S I t I     (1a) 
 

           1( ) G G b a
G

G t S X t G t S G R t
V
 

      
 

  (1b) 

 
where 푆  [1/min] is the rate constant which gives the rate 
of change of glucose caused by deviation from the basal 
glucose concentration 퐺  [mg/dl], parameter 푆  
[ml/휇U/min] is known as the insulin sensitivity index and 
푝  [1/min] is a rate constant. 

Parameter 푉  [dl/kg] represents the glucose 
distribution volume per kilogram of body weight BW 
[kg]. 퐺(푡) [mg/dl] is the blood glucose concentration and 
signal 푋(푡) [1/min] represents the insulin in remote 
compartment. Values 퐼  [휇U/ml] and 퐺  [mg/dl] are the 
basal insulin concentration and the basal glucose 
concentration respectively. In a basal steady state we 
have 푋(0) = 0 and 퐺(0) = 퐺 . Inputs of the model (1) 
are plasma insulin concentration 퐼(푡) [휇U/ml] and 
glucose rate of appearance 푅 (푡) [mg/kg/min]. 

Signal 푅 (푡) can have in general two sources – the 
absorption of glucose from gastro-intestinal tract 
(modeled as a subsystem) and direct intravenous glucose 
administration. Insulin absorption is modeled as a 
separate subsystem where the output is insulin 
concentration 퐼(푡) [15], [16]. The subsystem has the 
form: 
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where parameter 푇  [min] is a time constant of the 
subsystem, 푘  [1/min] is a decay rate of insulin in plasma 
and parameter 푉  [dl/kg] represents an insulin distribution 
volume per kilogram of body weight. Input 푣(푡) 
[휇U/kg/min] is insulin subcutaneous infusion rate, 푆 (푡) 
and 푆 (푡) [휇U/kg] represent the amount of insulin in 
compartments of the subsystem. Third subsystem 
describes the glucose absorption from gastrointestinal 
tract, i.e. output of the subsystem is the signal 푅 (푡) 
[mg/kg/min]. The subsystem is described as follows: 

 

      1 1
G

D D
D t D t A d t
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where parameter 푇  [min] is a time constant and 퐴  
[dimensionless] is a friction of ingested carbohydrates 
which are effectively absorbed. 

Input 푑(푡) [mg/kg/min] is the rate of carbohydrate 
ingestion at meal time, i.e. signal 푑(푡) is an impulse with 
a width of one sampling period while the impulse area 
corresponds to the amount of ingested carbohydrates. 

II.2. Identification of Model Parameters 

For identification of model parameters we used data 
collected from a male T1DM subject aged 14, with 
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퐵푊 =  64.6 [kg] and using fast-acting insulin 
NovoRapid (insulin Aspart) from an insulin pump. 
 
Insulin absorption subsystem 

The first step in model identification was identifying 
of insulin absorption subsystem based on 
pharmacokinetics data of the used insulin. 

PK data from [14] were used. An average basal insulin 
infusion rate 푣  [휇U/kg/min] of the subject during the 
day is known since data from insulin pump are available. 

Signal 푣(푡) is a sum of bolus part 푣 (푡) and basal part 
푣 . The aim is to identify the vector of unknown 
parameters Θ = [푇 푘 푉 ] so that the error between 
simulated insulin concentration 퐼(푡) and PK data is 
minimized. In basal (steady) state for a given 푣  we get 
the basal insulin concentration 퐼  as the output and 퐼(푡) 
response after a bolus administration. We used the 
nonlinear least-squares optimization to identify the vector 
Θ . 
 
Insulin sensitivity index and insulin action time 

In the next step we identified the parameter related to 
insulin sensitivity 푆  and insulin action time 푝 . 

These parameters determine dynamics of remote 
insulin signal 푋(푡). The measuring principle of 
pharmacodynamics is to maintain glycemia at basal 
concentration after bolus administration by intravenous 
glucose infusion. This glucose infusion corresponds to 
the signal 푅 (푡) in the equation (1b). 

If the Eq. (1b) is written in the form: 
 

            1
G b G

G
G t S G t G Ra t V X t G t

V
      (4) 

 
and we measure the PK, i.e. 퐺̇(푡) = 0, then 퐺(푡) ≈
퐺  ∀ 푡. It is obvious that parameter 푆  has minor 
influence in order to achieve 퐺̇(푡) = 0, so we assume 
푆 = 0 during this step of parameter identification. 

The aim is to identify vector of unknown parameters 
Θ = [푆 푝 ] so that the error between 퐺(푡) and 퐺  is 
minimized. Signal 푅 (푡) is given by PD data. 
 
Finalizing the model 

At last, remaining parameters 푆  and 푇  are identified 
based on CGM data. The data containing both basal and 
bolus insulin dosing together with the amount of ingested 
carbohydrates were used as inputs to the model. 

Now we are identifying a vector of unknown 
parameters Θ = [푆 푇 ] so that the error between 
measured CGM data and the simulator output is 
minimized. Again, nonlinear least-square optimization 
was used. All identified parameters are reported in Table 
I. For the extended description of the identification 
process, please refer to our preliminary work [11]. 

 
TABLE I 

T1DM IDENTIFIED MODEL PARAMTERS 
푇  푘  푉  푆  푝  푆  푇  

44.55 0.1645 138.8 0.00159 0.0106 33.474 0.032 

TABLE II 
OTHER FIXED PARAMETERS OF THE MODEL 

푉  퐺  퐴  
1.467 8.5 0.95 

III. LPV-based Robust Gain-Scheduled 
Controller Design 

In this section a new LPV model is presented on the 
base of the nonlinear Bergman's minimal model, which is 
then used to design a robust discrete LPV-based gain-
scheduled controller for T1DM. 

III.1. LPV Model of T1DM 

The Bergman's model (1) with the insulin absorbation 
model (2) can be transformed to the following LPV 
model with substitutions 푥 (푡) = 퐺(푡), 푥 (푡) = 푋(푡), 
푥 (푡) = 푆 (푡), 푥 (푡) = 푆 (푡), 푥 (푡) = 퐼(푡) and 푢(푡) =
푣(푡): 

 
         
   

x t A x t Bu t W

y t Cx t

   


 (5) 

 
where 휃(푡) ∈ Ω is a vector of scheduled parameters and: 
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furthermore: 

 

   1 10 1 3 30 3
1 1

p p

i i i i
i i

p p p , p p p   
 

      

 

   0 0
1 1

p p

i i i i
i i

a a a , b b b   
 

      

 
The coefficient 푎(휃) is used to cover the nonlinear 

part of (1b) 푋(푡)퐺(푡) → 푥 푥  in the following way: 
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      0 1 1 1 2 1 2a G t a a x a x x x         (6) 
 
where 휃 (푡) = . The coefficients 푎  and 푎  were 
calculated so as to maintain the scheduling parameter 휃  
in the range 〈−1,1〉: 
 

 
       

0 12 2
min y max y min y max y

a , a
 

   (7) 

 
Note, the coefficients 푎 , 푖 = 2,3,4,5 are equal to zero. 

Similarly, the coefficient 푏(휃) is calculated in the 
following way: 

 
       0 2 2 3 3ab y R b bt b b         (8) 
 
where coefficients 푏  and 푏  are calculated so as to 
maintain the scheduling parameter 휃  in the range 
〈−1,1〉: 

 
   

0 2
a amin R / y max R / y

b



 

 

   
2 2

a amin R / y max R / y
b


 , 

0

2
1

aR b
y

b



  

 
Furthermore 푏 = 5 % of avarage 푅 (푡) (uncertainty) 

and 푏 = 0, 푖 = 1,4,5 as well as 휃 (푡) ∈ 〈−1,1〉 is 
unknown but constant parameter describing uncertainty. 

For parameters 푝  and 푝  we also considered an 
uncertainty (±5%): 
 
    1 10 14 4 3 30 35 5p p p , p p p        (9) 
 
where: 
푝 = 푝 , 푝 = 5 % of 푝 , 푝 = 푝 , 푝 = 5 % 
of 푝 , 푝 = 0, 푖 = 1,2,3,5, 푝 = 0, 푖 = 1,2,3,4 
and 휃 ,휃 ∈ 〈−1,1〉 are unknown but constant 
parameters. 

For the robust discrete LPV-based gain-scheduling 
controller design the model (5) is transformed to discrete 
time-space and 푊(휃) is neglected, because has no effect 
on stability. 

III.2. Robust Gain-Scheduled Controller Design 

The output feedback gain-scheduled control law is 
considered for discrete-time PID (often denoted as PSD) 
controller in the form: 

 

 
         

      
0

1

k

P I
i

D

u k K | k e k K | k e i

K | k e k e k

 




  

  


 (10) 

where 푒(푘) = 푦(푘) − 푤(푘) is control error, 푤(푘) is 
reference value and gain matrices 퐾 (⋅), 퐾 (⋅), 퐾 (⋅) are 
controller parameter matrices1 (indexes P, I, D means 
proportional, sum (integral) and first difference 
(derivative), respectively) in the form: 
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Note that the number of controller gain matrices is 

only 2 (for 휃  and 휃 ), the rest 3 (uncertainty) is equal to 
zero. Because the reference signal 푤(푘) does not 
influence the closed-loop stability, we assume that it is 
equal to zero. For 푤(푘) = 0, the control law (10) can be 
rewritten as: 

 

 
         

      
0

1

k

P I
i

D

u k K | k y k K | k y i

K | k y k y k

 




  

  


 (11) 

 
State space description of PID controllers can be 

derived in the following way [17]. We can extend the 
system with two state variables 푧(푘) = [푧 (푘),  푧 (푘)]  
where 푧 (푘) = ∑ 푦(푖) and 푧 (푘) = ∑ 푦(푖), then 
푦(푘 − 1) = 푧 (푘) − 푧 (푘). Substituting to (11) one 
obtains: 

 

   
          

          2 2 1

P I D

I D

u k K | k K | k K | k y k

K | k z k K | k z k z k

  

 

   

  
 (12) 

 
Control law (12) can be transformed to matrix form: 

 
      u t F | k y k   (13a) 
 
where 푦 = 푦(푘), 푧 ( ), 푧 ( )  is the extended 
measurement output vector and: 
 

     

 
     

 
   

P I D
T

D

I D

K | k K | k K | k
F | k K | k

K | k K | k

  
 

 

  
   
  

 (13b) 

 
Substituting the control law (13a) to the discrete 

uncertain LPV system the closed-loop system is obtained 
in the form: 

 
      1 cx k A | k x k    (14) 

 
1For SISO systems they are scalars. 
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where: 
푥(푘) = [푥(푘), 푧 (푘), 푧 (푘)]  

퐴 (휃|푘) =  퐴 (휃|푘) +  퐵 (휃|푘)퐹(휃|푘) 퐶 (휃|푘) 
 

and: 
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Remark 1. The controller's filter of the derivative 

(differential) part can be included in the system model. 
To access the performance quality a quadratic cost 

function [18] known from LQ theory is used in this 
paper, where weighting matrices depends on scheduling 
parameters [19]. Using this approach we can affect 
performance quality in each operating point separately.  

The quadratic cost function is then in the form: 
 

 

           

 

0

0

T T
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d
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J x k Q | k x k u k Ru k

J | k

 










 







 

 (15) 

 
where 푄(휃|푘) = 푄 + ∑ 푄 휃 , 푄 = 푄 ≥ 0,  푄 ,푄 ∈
ℝ × , 푅 ∈ ℝ ×  are symmetric positive definite 
(semidefinite) and definite matrices, respectively. The 
concept of guaranteed cost control is used in a standard 
way. 

Definition 1. Consider the system (5) with control 
algorithm (10). If there exists a control law $u^*$ and a 
positive scalar 퐽∗ such that the closed-loop system (14) is 
stable and the value of closed-loop cost function (15) 
satisfies 퐽 ≤  퐽∗ then 퐽∗ is said to be a guaranteed cost and 
푢∗ guaranteed cost control law for system (5). 

Substituting the control law (12) to the quadratic cost 
function (15) we can obtain: 

 

 

 

      
d

TT T

J | k

x Q | k C F | k RF | k C



  



 
 (16) 

 
Definition 2. [20] The linear closed-loop system (14) 

for 휃 ∈ Ω is quadratically stable if and only if there exist 
a symmetric positive definite matrix 푃 > 0 and for the 
first difference of Lyapunov function 푉(푘) = 푥 푃푥 
along the trajectory of closed-loop system (14) holds: 

 
       0T

c cV | k A | k PA | k P       (17) 
 
From LQ theory we introduce the well known results. 

Lemma 1. [21] Consider the closed-loop system (14). 
Closed-loop system (14) is quadratically stable with 
guaranteed cost if and only if the following inequality 
holds: 
 
      0e u dB min V | k J | k      (18) 
 
for all 휃(푘) ∈ Ω. The main result of this section, the 
robust discrete gain-scheduled controller design 
procedure, relies on the concept of multi-convexity, that 
is, convexity along each direction 휃  of the parameter 
space. The implications of multiconvexity for scalar 
quadratic functions are given in the next lemma [22]. 
 

Lemma 2. Consider a scalar quadratic function of 
휃 ∈ ℝ : 
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1 1 1
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and assume that 푓(휃 , … ,휃 ) is multi-convex, that is 

( ) =  2 푐 ≥  0 for 푖 = 1,2, … ,푝. Then 푓(휃) is 

negative for all 휃 ∈ Ω if and only if it takes negative 
values at the corners of 휃. Using Lemma 1 and 2 the 
following theorem is obtained. 
 

Theorem 1. Closed-loop system (14) is quadratically 
stable with guaranteed cost if a positive defined 푃 > 0 
for all 휃(푘) ∈  Ω exists, matrices 푄 ,푅, 푖 = 1,2, …  푝 and 
gain-scheduled controller matrices 퐹 휃(푘)  satisfy: 
 

     0M k ; k    (19) 
 
 0 1 2iiM ; i , , p    (20) 
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The obtained model was extended for robust discrete 
gain-scheduled PID controller design (14). 

Then using Theorem 1 with weighting matrices 
푄 = 푞  퐼, 푞 = 1 × 10 , 푞 = 1 × 10 , 푞 =  1 ×
10 , 푞 = 푞 = 푞 = 0, 푅 = 푟 퐼, 푟 = 1 and 휉 ≤
 푃(휃) ≤ 휉 , 휉 = 1 × 10 , 휉 = 1 × 10 , 푇 = 5 [min] 
with LMILAB one can obtain robust discrete gain-
scheduled controller in the form (10) where: 
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For the illustration propose simulation experiment 

results are shown in Fig. 2. 
During manual administration of insulin by the T1DM 

subject, the measured glycemia has been higher than 10 
[mmol/l] during 45 % of the monitored time. In the case 
of automatic dosing controlled by the proposed gain-
scheduled algorithm, the time when glycemia reached the 
level of 10 [mmol/l] or more was reduced to 9.9 % of the 
simulation time. 

V. Conclusion 
The robust discrete gain-scheduled controller design 

for Bergman’s minimal model of glucose-insulin 
dynamics coupled with insulin absorption subsystem and 
carbohydrates absorption subsystem was proposed in this 
paper. In contrast to publications in literature we 
presented a completely new LPV description of 
Bergman’s minimal model and a new approach to 
controller design. The obtained design procedure can be 
used in systems where we need to save the operation 
energy (e.g. low-cost micro-controllers). 

The presented theory opens new possibilities for 
further research and study in this area. 

Acknowledgements 
The work has been supported by the Slovak Scientific 

Grant Agency VEGA, Grant No. 1/1241/12 and Grant 
No. 1/2256/12.  The paper is one of the outcomes of the 
research work for the project entitled "Research center 
for severe diseases and related complications", "ITMS: 
26240120038". "This project is being co-financed by the 
European Union. We support research activities in 
Slovakia". 

References 
[1] R.J. Adams, A. G. Sparks, S.S. Banda, A gain scheduled 

multivariable design for a manual light control system. IEEE 
Conference on Control Applications, Vol. 1, pp. 584-589, 1992. 

[2] R.A. Hyde, K. Glover, The application of scheduled ℎ  controllers 
to a VSTOL aircraft, IEEE Transactions on Automatic Control, 

Vol. 38(Issue 7):1021-1039, 1993. 
[3] J. S. Shamma, Control of Linear Parameter Varying Systems with 

Applications, chapter An Overview of LPV Systems (Springer, 
2012, pp. 3-26). 

[4] V. Veselý, A. Ilka, Gain-scheduled PID controller design, Journal 
of Process Control, Vol. 23(Issue 8):1141-1148, September 2013. 

[5] A. Ilka, V, Veselý, Discrete Gain-Scheduled Controller Design: 
Variable Weighting Approach, International Carpathian Control 
Conference (ICCC), Vol. 15, pp. 186-191, May 2014. 

[6] V. Veselý, A. Ilka, PID robust gain-scheduled controller design, 
European Control Conference (ECC), pp. 2756-2761, June 2014. 

[7] J. Osuský, V. Veselý, Robust Gain Scheduling Control Design in 
Frequency Domain, International Review of Automatic Control 
(IREACO), Vol. 7(Issue 5): 476-484, 2014. 

[8] D. Vozák, V. Veselý, Stable Predictive Control with Input 
Constraints Based on Variable Gain Approach, International 
Review of Automatic Control (IREACO), Vol. 7(Issue 2): 131-139, 
2014. 

[9] M. Tárník, J. Murgaš, E. Miklovičová, Ľ. Farkas, Adaptive 
control of time-delayed systems with application for control of 
glucose concentration in type 1 diabetic patients, IFAC 
International Workshop on Adaptation and Learning in Control 
and Signal Processing, Vol. 11, Caen, France, July 3-5, 2013. 

[10] M. Tárník, E. Miklovičová, J. Murgaš, I. Ottinger, T. Ludwig, 
Model reference adaptive control of glucose in type 1 diabetics: A 
simulation study. IFAC World Congress, Vol. 19, Cape Town 
International Convention Centre, Cape Town, South Africa, 2014. 

[11] I. Ottinger, T. Ludwig, E. Miklovičová, V. Bátora, J. Murgaš, M. 
Tárník, Individualized T1DM simulator for verification of 
adaptive controller. Accepted on International Conference on 
Process Control, Vol. 20, June 9-12, 2015. 

[12] R.N. Bergman, Y.Z. Ider, C.R. Bowden, C. Cobelli, Quantitative 
estimation of insulin sensitivity, Am. J. Physiol. Endocrinol. 
Metab. Vol. 236(Issue 6):E667-E677, 1979. 

[13] Novo-Nordisk, NovoRapid (insulin aspart) - Product Monograph, 
Watermeadow Medical, Two Rivers House, Station Lane, Witney, 
Oxfordshire OX28 4BH, UK on behalf of Novo Nordisk A/S, 2002. 

[14] S.R. Mudaliar, F. A. Lindberg, M. Joyce, P. Beerdsen, P. Strange, 
A. Lin, R. R. Henry, Insulin aspart (b28 asp-insulin): A fast-acting 
analog of human insulin. Diabetes Care, Vol. 22(Issue 9):1501-
1506, September 1999. 

[15] P. Herrero, P. Georgiou, N. Oliver, M. Reddy, D. Johnston, Ch. 
Toumazou, A composite model of glucagon-glucose dynamics for 
in silico testing of bihormonal glucose controllers. Journal of 
Diabetes Science and Technology, Vol. 7(Issue 4):941-951, July 
2013. 

[16] R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-
Benedetti, M. O. Federici, T. R. Pieber, H. C. Schaller, L. 
Schaupp, T. Vering, M. E. Wilinska, Nonlinear model predictive 
control of glucose concentration in subjects with type 1 diabetes. 
Physiological Measurement, Vol. 25(Issue 4):905-913, 2004. 

[17] V. Veselý, D. Rosinová, Robust PID-PSD Controller Design: 
BMI Approach, Asian Journal of Control, Vol. 15(Issue 2):469-
478, 2013. 

[18] J. Engwerda, A. Weeren, A result on output feedback linear 
quadratic control, Automatica, Vol. 44(Issue 1):265-271, 2008. 

[19] A. Ilka, V. Veselý, Gain-Scheduled Controller Design: Variable 
Weighting Approach, Journal of Electrical Engineering, Vol. 
65(Issue 2):116-120, March-April 2014. 

[20] P. Apkarian, P. Gahinet, G. Becker, Self-Scheduled 퐻  Control of 
Linear Parameter-Varying Systems: A Design Example. Auto- 
matica, Vol. 31(Issue 9):1251-1261, 1995. 

[21] V.M. Kuncevič, M.M. Lyčak, Control system design using 
Lyapunov function approach (Nauka, Moskva, 1977, in Russian). 

[22] P. Gahinet, P. Apkarian, M. Chilali, Affine parameter-dependent 
Lyapunov functions and real parametric uncertainty, IEEE 
Transactions on Automatic Control, Vol. 41(Issue 3):436-442, 
March, 1996. 

Authors’ information 
Institute of Robotics and Cybernetics, Faculty of Electrical Engineering 
and Information Technology, Slovak University of Technology in 



Copyright © 201

Bratislava, Ilkov
E-mail:
 

interested in 
Lyapunov theory of stability, linear matrix inequalities and gain
scheduled co
 

 

 

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 
one diabetes mellitus.
 

Copyright © 201

Bratislava, Ilkov
mail:

interested in 
Lyapunov theory of stability, linear matrix inequalities and gain
scheduled co

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

ne diabetes mellitus.

Copyright © 201

Bratislava, Ilkov
mail: adrian.ilka@stuba.sk

interested in 
Lyapunov theory of stability, linear matrix inequalities and gain
scheduled co

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

ne diabetes mellitus.

Copyright © 201

Bratislava, Ilkov
adrian.ilka@stuba.sk

interested in optimal control, 
Lyapunov theory of stability, linear matrix inequalities and gain
scheduled control.

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

ne diabetes mellitus.

Copyright © 2015 Praise Worthy Pri

Bratislava, Ilkovičova 3, 812 19 Bratislava,
adrian.ilka@stuba.sk

optimal control, 
Lyapunov theory of stability, linear matrix inequalities and gain

trol. 

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 
ne diabetes mellitus.

Praise Worthy Pri

ičova 3, 812 19 Bratislava,
adrian.ilka@stuba.sk

Adrian Ilka
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

optimal control, 
Lyapunov theory of stability, linear matrix inequalities and gain

Ivan Ottinger
in robotics and cybernetics in 2012
Faculty 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in
control.
 

T
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 
modeling
 

Marián Tárník
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2008, Master of Sci
cybernetics in 2010 and PhD. degree in 2013 at 
the same place where

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

ne diabetes mellitus. 

A. Ilka, I. Ottinger

Praise Worthy Pri

ičova 3, 812 19 Bratislava,
adrian.ilka@stuba.sk

Adrian Ilka
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

optimal control, 
Lyapunov theory of stability, linear matrix inequalities and gain

Ivan Ottinger
in robotics and cybernetics in 2012
Faculty 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in
control.
 

Tomáš Ludwig
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 
modeling
 

Marián Tárník
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2008, Master of Sci
cybernetics in 2010 and PhD. degree in 2013 at 
the same place where

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

A. Ilka, I. Ottinger

Praise Worthy Pri

ičova 3, 812 19 Bratislava,
adrian.ilka@stuba.sk 

Adrian Ilka
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

optimal control, power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

Ivan Ottinger
in robotics and cybernetics in 2012
Faculty 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in
control. 

omáš Ludwig
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 
modeling

Marián Tárník
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2008, Master of Sci
cybernetics in 2010 and PhD. degree in 2013 at 
the same place where

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

A. Ilka, I. Ottinger

Praise Worthy Pri

ičova 3, 812 19 Bratislava,

Adrian Ilka
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

Ivan Ottinger
in robotics and cybernetics in 2012
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in

omáš Ludwig
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 
modeling diabetes.

Marián Tárník
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2008, Master of Sci
cybernetics in 2010 and PhD. degree in 2013 at 
the same place where

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

A. Ilka, I. Ottinger

Praise Worthy Prize S.r.l. 

ičova 3, 812 19 Bratislava,

Adrian Ilka (MSc
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

Ivan Ottinger (MSc
in robotics and cybernetics in 2012

of Electrical Engineering, Slovak 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in

omáš Ludwig
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 

diabetes.

Marián Tárník 
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2008, Master of Sci
cybernetics in 2010 and PhD. degree in 2013 at 
the same place where

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

A. Ilka, I. Ottinger

ze S.r.l. 

ičova 3, 812 19 Bratislava, Slovak Republic.

(MSc.) 
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

MSc.
in robotics and cybernetics in 2012

of Electrical Engineering, Slovak 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in

omáš Ludwig (MSc
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 

diabetes. 

 (MSc
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2008, Master of Sci
cybernetics in 2010 and PhD. degree in 2013 at 
the same place where

doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

A. Ilka, I. Ottinger, 

ze S.r.l. - All rights reserved 

Slovak Republic.

.) was born in Dunajsk
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

.), born in 1987
in robotics and cybernetics in 2012

of Electrical Engineering, Slovak 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in

(MSc
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 

(MSc. PhD.) was born in 
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2008, Master of Science degree in technical 
cybernetics in 2010 and PhD. degree in 2013 at 

 he is from 2013 until now 
doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

, T. Ludwig, M. Tárník, V. Veselý

All rights reserved 

Slovak Republic.

was born in Dunajsk
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

), born in 1987
in robotics and cybernetics in 2012

of Electrical Engineering, Slovak 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in

(MSc.), born in 1988, 
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 

. PhD.) was born in 
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 

ence degree in technical 
cybernetics in 2010 and PhD. degree in 2013 at 

he is from 2013 until now 
doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

T. Ludwig, M. Tárník, V. Veselý

All rights reserved 

Slovak Republic.

was born in Dunajsk
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

), born in 1987
in robotics and cybernetics in 2012

of Electrical Engineering, Slovak 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in

.), born in 1988, 
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 

. PhD.) was born in 
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 

ence degree in technical 
cybernetics in 2010 and PhD. degree in 2013 at 

he is from 2013 until now 
doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

T. Ludwig, M. Tárník, V. Veselý

All rights reserved 

Slovak Republic. 

was born in Dunajsk
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

), born in 1987, 
in robotics and cybernetics in 2012 

of Electrical Engineering, Slovak 
University of Technology in Bratislava.
currently a postgraduate student focused on bio
cybernetics with the specialization in

.), born in 1988, 
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 

. PhD.) was born in 
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 

ence degree in technical 
cybernetics in 2010 and PhD. degree in 2013 at 

he is from 2013 until now 
doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

T. Ludwig, M. Tárník, V. Veselý

All rights reserved       

 

was born in Dunajsk
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

, graduated 
 form the 

of Electrical Engineering, Slovak 
University of Technology in Bratislava. 
currently a postgraduate student focused on bio
cybernetics with the specialization in adaptive 

.), born in 1988, 
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 

. PhD.) was born in 
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 

ence degree in technical 
cybernetics in 2010 and PhD. degree in 2013 at 

he is from 2013 until now 
doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

T. Ludwig, M. Tárník, V. Veselý

       

was born in Dunajsk
Streda, Slovakia in 1987. He received BSc
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain

graduated 
form the 

of Electrical Engineering, Slovak 
 He is 

currently a postgraduate student focused on bio
adaptive 

.), born in 1988, 
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 

. PhD.) was born in 
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 

ence degree in technical 
cybernetics in 2010 and PhD. degree in 2013 at 

he is from 2013 until now 
doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

T. Ludwig, M. Tárník, V. Veselý

        

162

was born in Dunajská 
Streda, Slovakia in 1987. He received BSc 
degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 
in 2010 and MSc degree in technical 
cybernetics in 2012. Since 2012 until now he 
has pursued further studies to get his PhD. He is 

power system control, robust control, 
Lyapunov theory of stability, linear matrix inequalities and gain-

graduated 
form the 

of Electrical Engineering, Slovak 
He is 

currently a postgraduate student focused on bio 
adaptive 

.), born in 1988, 
graduated in robotics and cybernetics in 2012 
form the Faculty of Electrical Engineering, 
Slovak University of Technology in Bratislava. 
He is currently a postgraduate student focused 
on bio cybernetics with the specialization in 

. PhD.) was born in 
Levice, Slovakia in 1986. He received Bachelor 
of Science degree from the Faculty of Electrical 
Engineering and Information Technology, 
Slovak University of Technology in Bratislava 

ence degree in technical 
cybernetics in 2010 and PhD. degree in 2013 at 

he is from 2013 until now 
doing further research as a researcher. He is interested in Adaptive 
Control, Lyapunov design approach and modeling and control of type 

 
T. Ludwig, M. Tárník, V. Veselý

                    

162 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 
control of large
optimization. He is author or coauthor of more than 300 scientific 
papers.
 

predictive control, adaptive control, system modeling and identification.
 

systems. He is a member of the I
Society and of the Slovak Society for Cybernetics and Informatics.
 

T. Ludwig, M. Tárník, V. Veselý

                 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 
control of large
optimization. He is author or coauthor of more than 300 scientific 
papers.
 

predictive control, adaptive control, system modeling and identification.
 

systems. He is a member of the I
Society and of the Slovak Society for Cybernetics and Informatics.
 

T. Ludwig, M. Tárník, V. Veselý

                                

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 
control of large
optimization. He is author or coauthor of more than 300 scientific 
papers. 

predictive control, adaptive control, system modeling and identification.

systems. He is a member of the I
Society and of the Slovak Society for Cybernetics and Informatics.

T. Ludwig, M. Tárník, V. Veselý, 

               

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 
control of large
optimization. He is author or coauthor of more than 300 scientific 

predictive control, adaptive control, system modeling and identification.

systems. He is a member of the I
Society and of the Slovak Society for Cybernetics and Informatics.

 E. Miklovičová, J. Murgaš

               International Review of Automatic Control, Vol. 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 
control of large-scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

predictive control, adaptive control, system modeling and identification.

systems. He is a member of the I
Society and of the Slovak Society for Cybernetics and Informatics.

E. Miklovičová, J. Murgaš

International Review of Automatic Control, Vol. 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

predictive control, adaptive control, system modeling and identification.

systems. He is a member of the I
Society and of the Slovak Society for Cybernetics and Informatics.

E. Miklovičová, J. Murgaš

International Review of Automatic Control, Vol. 

Vojtech Vesel
Ve
MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 
Petersburg
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Eva 
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

Ján Murgaš
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 
adaptive and non

systems. He is a member of the I
Society and of the Slovak Society for Cybernetics and Informatics.

E. Miklovičová, J. Murgaš

International Review of Automatic Control, Vol. 

Vojtech Vesel
Veľké
MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 
Petersburg
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Eva Miklovičová
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

Ján Murgaš
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 
adaptive and non

systems. He is a member of the I
Society and of the Slovak Society for Cybernetics and Informatics.

E. Miklovičová, J. Murgaš

International Review of Automatic Control, Vol. 

Vojtech Vesel
é Kapu

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 
Petersburg
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Miklovičová
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

Ján Murgaš
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 
adaptive and non

systems. He is a member of the I
Society and of the Slovak Society for Cybernetics and Informatics.

E. Miklovičová, J. Murgaš

International Review of Automatic Control, Vol. 

Vojtech Vesel
Kapušany, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 
Petersburg, Russia, in 1964, PhD and DSc
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Miklovičová
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

Ján Murgaš (Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 
adaptive and non

systems. He is a member of the IEEE, of the American Mathematical 
Society and of the Slovak Society for Cybernetics and Informatics.

E. Miklovičová, J. Murgaš

International Review of Automatic Control, Vol. 

Vojtech Veselý (Prof. MSc. DSc
any, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 

, Russia, in 1964, PhD and DSc
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Miklovičová
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

(Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 
adaptive and non

EEE, of the American Mathematical 
Society and of the Slovak Society for Cybernetics and Informatics.

E. Miklovičová, J. Murgaš 

International Review of Automatic Control, Vol. 

(Prof. MSc. DSc
any, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 

, Russia, in 1964, PhD and DSc
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Miklovičová (Assoc Prof. MSc. Ph
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

(Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 
adaptive and non-linear control, large

EEE, of the American Mathematical 
Society and of the Slovak Society for Cybernetics and Informatics.

 

International Review of Automatic Control, Vol. 

(Prof. MSc. DSc
any, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 

, Russia, in 1964, PhD and DSc
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Assoc Prof. MSc. Ph
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

(Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 

linear control, large
EEE, of the American Mathematical 

Society and of the Slovak Society for Cybernetics and Informatics.

International Review of Automatic Control, Vol. 

(Prof. MSc. DSc
any, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 

, Russia, in 1964, PhD and DSc
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Assoc Prof. MSc. Ph
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

(Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 

linear control, large
EEE, of the American Mathematical 

Society and of the Slovak Society for Cybernetics and Informatics.

International Review of Automatic Control, Vol. 

(Prof. MSc. DSc.) 
any, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 

, Russia, in 1964, PhD and DSc
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Assoc Prof. MSc. Ph
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

(Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 

linear control, large
EEE, of the American Mathematical 

Society and of the Slovak Society for Cybernetics and Informatics.

International Review of Automatic Control, Vol. 

.) was born in 
any, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 

, Russia, in 1964, PhD and DSc
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His res
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Assoc Prof. MSc. Ph
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technolo
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

(Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 

linear control, large
EEE, of the American Mathematical 

Society and of the Slovak Society for Cybernetics and Informatics.

International Review of Automatic Control, Vol. 8, N.

was born in 
any, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 

, Russia, in 1964, PhD and DSc
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
Bratislava. Since 1986 he has been a full professor. His research 
interests include the areas of power system control, decentralized 

scale systems, robust control, predictive control and 
optimization. He is author or coauthor of more than 300 scientific 

Assoc Prof. MSc. Ph
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 
Engineering and Information Technology, STU 
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

(Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form t
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 

linear control, large-scale 
EEE, of the American Mathematical 

Society and of the Slovak Society for Cybernetics and Informatics. 

, N. 2

was born in 
any, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 

, Russia, in 1964, PhD and DSc
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
earch 

interests include the areas of power system control, decentralized 
scale systems, robust control, predictive control and 

optimization. He is author or coauthor of more than 300 scientific 

Assoc Prof. MSc. PhD.)
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 

gy, STU 
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification.

(Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 
received the PhD degree in 1980 form the 
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 

scale 
EEE, of the American Mathematical 

 

2 

was born in 
any, Slovakia in 1940. He received 

MSc degree in Electrical Engineering from the 
Leningrad Electrical Engineering Institute, St. 

, Russia, in 1964, PhD and DSc 
degrees from the Slovak University of 
Technology, Bratislava, Slovak Republic, in 
1971 and 1985, respectively. Since 1964 he has 

been with the Department of Automatic Control Systems, STU FEI in 
earch 

interests include the areas of power system control, decentralized 
scale systems, robust control, predictive control and 

optimization. He is author or coauthor of more than 300 scientific 

) 
obtained the MSc. in 1990 and the PhD. in 
Automation in 1997, both from the Slovak 
University of Technology in Bratislava. 
Currently she is with the Institute of Robotics 
and Cybernetics at the Faculty of Electrical 

gy, STU 
in Bratislava. Her research interests include 

predictive control, adaptive control, system modeling and identification. 

(Prof. MSc. PhD.), born in 1951, 
graduated in control engineering in 1975 and 

he 
Faculty of Electrical Engineering, Slovak 
University of Technology in Bratislava. Since 
1996 he has been Full Professor for control 
engineering. His research interests include 

scale 
EEE, of the American Mathematical 



  
International Review of Automatic Control (I.RE.A.CO.), Vol. 8, N. 2 

 ISSN 1974-6059  March 2015 
 

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved 

163 

Challenges in Model Predictive Control Application 
for Transient Stability Improvement Using TCSC 

 
 

S. Kulkarni, S. Wagh, N. Singh 

 
 
Abstract – Performance of a system is always dominated by constraints rather than dynamics. 
Conventional controllers determine off-line, a feedback policy that provides optimal control action 
based on minimization of one or more cost functions with or without constraints using linear or 
nonlinear model of the system. Increased system complexity and demanding performance 
requirements have rendered classical control laws inadequate in spite of their simplicity as in case 
of PID loop or robustness in case of H2 or H∞ control designs. 
The only generic control that can meet these challenges is Model Predictive Control (MPC). The 
most challenging MPC application would be maintaining stability after large disturbances in 
highly nonlinear, complex and hybrid system such as power system. The practical difficulties are 
due to large system having strong interactions in various parameters with hard constraints.  The 
paper discusses various issues in tuning and maintaining constraints on states and control 
variables for a Single Machine Infinite Bus (SMIB) system using Thyristor Controlled Series 
Compensator (TCSC) as a controller. Copyright © 2015 Praise Worthy Prize S.r.l. - All rights 
reserved. 
 
Keywords: Constrained Model Predictive Control, DAE Model, SMIB, TCSC, Transient Stability 
 
 

Nomenclature 
A, B, C System, input, output matrices respectively 
k Current time instant 
푥(푘 + 1) Vector of predicted state variables at the next 

sampling instant 
푢(푘) Vector of predicted control variables at the 

current sampling instant 
NP Length of prediction horizon 
NC Length of control horizon 
JK Objective function 
Y Vector of output variables 
Q, R Weighting matrices for state and control 

respectively (Tuning parameters) 
E, F, G Constraint matrices corresponding to change 

in control input, magnitude of control input 
and output parameter to be controlled 
respectively 

푦  Reference trajectory of output variables 
훿 Rotor angle 
푥  TCSC reactance 

I. Introduction 
Appreciating constraints handling strengths of MPC 

which is not just cutting off inputs at boundaries but also 
a control law generation using online optimization, 
performed over a finite horizon, has resulted in 
tremendous popularity of MPC applications, ranging 
from slow process industries to fast aerospace dynamics 
replacing a traditional fixed control. 

Since 1970 various versions of MPC have evolved 
such as, Model Predictive Heuristic Control (MPHC) [1], 
Model Algorithmic Control (MAC) or Dynamic Matrix 
Control (DMC) [2], Quadratic Dynamic Matrix Control 
(QDMC) [3] etc. 

Initially, MPC was targeted to applications such as 
petroleum refineries, chemical industries where the data 
could be made available easily from the plant located at 
one place. In addition, the processes being slow, the 
required control update rates were low which could 
easily afford long computation time required for on-line 
calculation of control. However, with the fast 
development in digital processors, computation time 
reduced tremendously, as a result of which MPC is now 
found everywhere including applications in 
communication. 

Around 1990 linear MPC reached sufficient maturity 
with respect to modeling, identification and issues like 
stability and robustness. For the systems that are 
inherently nonlinear, linear models were not found to 
describe system dynamics adequately which led to the 
need of nonlinear models. This motivated control 
engineers towards Nonlinear MPC (NMPC). In fact, the 
most challenging MPC application would be maintaining 
stability after large disturbances in highly nonlinear, 
complex and hybrid system such as power system. 

In literature, power system related applications of 
MPC include mainly voltage stability issues [4], 
formulation of a minimization problem with boundary 
values for obtaining critical conditions such as Critical 
Clearing Time (CCT), for transient stability [5], HVDC 
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power flow modulation to improve transient stability [6], 
a flatness based TCSC for transient stability 
enhancement [7], [14], MPC using trajectory sensitivity 
for voltage recovery [8], [9], trajectory sensitivity 
analysis for effective choice of TCSC location, along 
with effect of variation of firing angle for transient 
stability assessment [10], to name a few. 

However, in most of the applications either a classical 
model is used to represent the power system which fails 
to replicate the real power system, or a simplified version 
of MPC is implemented to limit the computational 
burden by restricting number of control moves while 
formulating the optimization problem. In [11] MPC was 
implemented to control the reactance of TCSC which in 
turn controlled the rotor angle delta, where a power 
system model was represented by taking into account a 
fifth order generator dynamics, exciter with saturation 
and governor dynamics. 

Although, MPC strategy was implemented for a tenth 
order power system model, major strength of MPC of 
handling constraints was not appreciated in the paper. 

In view of this, present paper describes systematic 
development of MPC with constraints on state and input 
variables for improving transient stability of power 
system using detailed DAE model, focusing on constraint 
handling issues involved. 

The paper is organized as follows: Section II explains 
detailed procedure of general MPC formulation and 
applies it to SMIB while third Section elaborates 
objective function formulation. Fourth Section describes 
difficulties involved in defining reference trajectories. 

Fifth Section describes constraint handling, followed 
by analysis supported by case-study simulations 
performed on representative SMIB using MATLAB in 
Section VI. 

Last section concludes with contribution and outcome 
of the paper. 

II. Constrained MPC Formulation               
for SMIB 

To explain the MPC problem formulation in detail for 
power system application, a simple SMIB as shown in 
Fig. 1 is considered. As given in [11] a nonlinear detailed 
Differential Algebraic Equations (DAE) model of the 
power system is obtained considering the rotor swing, 
rotor flux, and exciter with saturation, prime mover and 
governor dynamics. 

 

 
 

Fig. 1. Single Machine Infinite Bus System 

For a discrete time setting requirement of MPC the 
nonlinear model is linearized, a general form of which is 
given as [13]: 

 
푥(푘 + 1) = 퐴푥(푘) + 퐵푢(푘) (1)

 
If all the states of the system are assumed to be 

measurable, then predicted values of the states at the next 
sampling instant are shown as 푥 (푘 + 1) instead 
of 푥 (푘 + 1). When the future trajectory is predicted at 
the present sampling instant푘, the present control input is 
still unknown, represented a s푢(푘). This modifies (1)to: 
 

푥(푘 + 1) = 퐴푥(푘) + 퐵푢(푘) (2)
 
Using the outputs in the past, i.e. 푦(푘 − 1),푦(푘 −

2), …,control function in the past, i.e.푢(푘 − 1),푢(푘 −
2), …, and using the explicit proper model of the system, 
control input in the future including that at the present 
time instant is predicted. Input control trajectory is 
assumed to vary over a finite horizon called control 
horizon푁 , and remains constant thereafter. By iterating 
(2) over a finite prediction horizon 푁 , (3) is obtained: 

 

푥(푘 + 1|푘)
⋮

푥 푘 + 푁 1
=

퐴
⋮

퐴
푥(푘) +

⎣
⎢
⎢
⎢
⎡

퐵
⋮

퐴 퐵
⎦
⎥
⎥
⎥
⎤

푢(푘 − 1)  

+

⎣
⎢
⎢
⎢
⎡

퐵 … 0
퐵 + 퐴퐵 퐵 0

퐴 퐵 … 퐴 퐵
⎦
⎥
⎥
⎥
⎤ ∆푢(푘|푘)

⋮
∆푢(푘 + 푁 − 1|푘)

 

(3)

 
where, Φ, Γ and 퐺  are suitable matrices. 

III. Objective Function Formulation            
of SMIB 

MPC problem is thus formulated as solving on-line, a 
finite horizon open loop optimal control problem, subject 
to quadratic cost function and constraints in the form of 
linear inequalities [12]. A cost function 퐽penalizes 
deviations of the predicted controlled outputs 푦(푘 + 푗|푘) 
from a reference trajectory 푦 (푘 + 푗|푘). Defining the 
objective function as:: 

 

퐽 (푥(푘),푢) = ∥ 푦(푘 + 푗|푘) − 푦 (푘 + 푗|푘) ∥ ( )

+ ∥ Δ푢(푘 + 푗|푘) ∥ ( ) 

(4)
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Subject to element wise constraints: 
 
푦 ≤ 푦(푘 + 푗|푘) ≤  푦  for 푗 = 1, … ,푁  (5) 

 
푢 ≤ 푢(푘 + 푗|푘) ≤  푢  for  푗 = 0, . ,푁 − 1 (6) 

 
∆푢 ≤ ∆푢(푘 + 푗|푘) ≤ ∆푢   for  푗 = 0, . ,푁 − 1 (7) 

 
It should be noted that cost function penalizes rates of 

input vector, ∆푢 , and  not its value,푢. Simplified form of 
the cost function (4) is: 

 
퐽 =∥ 푌(푘) − 푌 (푘) ∥ + |∆푈(푘)|  (8) 

 
It is assumed that 푁 < 푁 , and ∆푢(푘 + 푗|푘) = 0  for 

푗 > 푁  so that 푢(푘 + 푗|푘) = 푢(푘 + 푁 − 1|푘) for 
푗 ≥  푁 which means that zero order hold is applied on 
the input for j >푁 . The weighting matrices 푄 and 푅 are 
given by: 

 

푄 =

푄(1) 0 … 0
0 푄(2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 푄(푁 )

( × )×( × )

 (9) 

  

푅 =

푅(0) 0 … 0
0 푅(1) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 푅(푁 − 1)

( × )×( × )

 (10) 

 
The form of cost function (8) indicates that the error 

vector (푌(푘 + 푗|푘) − 푌 (푘 + 푗|푘)) is penalized at 
every point in the prediction horizon if 푄(푗) > 0, which 
is the most common situation in prediction control.  

However, it is possible to penalize the error at only a 
few coincidence points, by setting 푄(푗) ≠ 0 for those 
points [5]. It is also possible to have different 
coincidence points for different components of error 
vector by setting the appropriate elements of weighting 
matrices to zero (푄(푗) = 0). Thus, instead of 푄(푗) > 0, a 
slightly weaker condition 푄(푗) ≥ 0 may be allowed to 
ensure퐽(푘) ≥ 0. Moreover, 푅(푗) ≥ 0  is needed to 
get 푗(퐾) > 0. A more strict condition i. e. 푅(푗) > 0 is 
not required because there are cases in which the changes 
in the control signal are not penalized. 푅(푗) are called as 
Move Suppression Factors (MSF), since increasing them 
penalizes changes in the input vector more heavily. 

It is also observed that cost function penalizes the 
rates of inputs and not the mere values [13]. 
푁 , 푁 , 푄(푗), 푅(푗), and the reference trajectory 

푦 (푘 + 푗) affect the behavior of closed loop system 
with predictive controller. 

Weights may be dictated by economic objectives of 
the control system but usually they are tuning parameters 
adjusted to give satisfactory dynamic performance. 

With the output trajectory: 

푦(푘 + 푖|푘) = 퐶푥(푘 + 푖|푘) (11)
 
the compact form (3) becomes: 
 

푌(푘) = Φ푋(푘) + Γ 푢(푘 − 1) + 퐺 Δ푈(푘) (12)
 

The error between 푌(푘) and 푌 (푘) is called as 
tracking error, which is the difference between future 
target trajectory and free responses of the system: 

 
퐸(푘) = 푌 (푘) −Φ푋(푘) − Γ푢(푘 − 1) (13)

 
Free responses are those that would occur over the 

prediction horizon if no input changes were 
made (Δ푈(푘) = 0). If the error 퐸(푘) is zero then it 
would be correct to set Δ푈(푘) = 0. (No change in input 
is required because the error is zero): 

 
푌(푘) − 푌 (푘) = Φ푋(푘) + Γ푢(푘 − 1) + 

+퐺 Δ푈(푘) − 퐸(푘) + Φ푋(푘) + Γ푢(푘 − 1) = 
= 퐺 Δ푈(푘) − 퐸(푘) 

(14)

 
Rewriting the objective function as: 

 
퐽 =∥ 퐺 훥푈(푘) − 퐸(푘) ∥ +∥ 훥푈(푘) ∥  (15)

 
Expanding the norms: 

 
퐽 = ∆푈 (푘)퐺 − 퐸 (푘) 푄 퐺 ∆푈(푘) − 퐸(푘)

+ ∆푈 (푘)푅∆푈(푘) 
(16)

 
This is further expanded as: 

 
퐽 = ∆푈 (푘)퐺 푄퐺 ∆푈(푘) − ∆푈 (푘)퐺 푄퐸(푘) + 

−퐸 (푘)푄퐺 ∆푈(푘) + 퐸 (푘)푄퐸(푘) + 
+∆푈 (푘)푅∆푈(푘)∆푈 (푘) 퐺 푄퐺 + 푅 ∆푈(푘) + 

−2퐸 (푘)푄퐺 ∆푈(푘) 

(17)

 
This has the quadratic form: 

 

퐽 =
1
2
∆푈 (푘)퐻∆푈(푘) + 푓 ∆푈(푘) + 푐표푛푠푡푎푛푡 (18)

 
where: 

퐻 = 2(퐺 푄퐺 + 푅) (19)
 
and: 

푓 = −2퐺 푄퐸(푘) (20) 
 
퐻 and 푓 are independent of ∆푈(푘). 

IV. Formation of Reference Trajectory 
In the formulation of (MPC) optimization problem, 

formation of reference trajectory plays an important role.  
The reference trajectory depends upon measurements 

푦(푘) available up to present sampling instant 푘. 
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If the future evolution of the reference is known 
apriori, the system can react before the change actually 
happens, thereby reducing the effects of delays.  

Appropriate selection of reference trajectory allows a 
shorter prediction horizon [12], saving in computation 
burden and computation time which is a prime 
requirement of real time controllers. The formation of 
reference trajectory issue in power systems is altogether 
different from process industry applications where, 
reference may be simply a constant or a fixed trajectory.  

For a power system, defining an appropriate reference 
trajectory is a challenge. For example, for power system 
dynamics represented by second order classical, the 
reference trajectory is formed with two variables such as 
rotor angle and rotor speed. However, for acceptable 
operation of power system from practical constraints 
point of view, it is impossible to force rotor angle and/or 
speed to one fixed value and any value in given tolerance 
band is acceptable. 

The problem becomes more complicated if the power 
system scenario changes in post-disturbance from that of 
pre-disturbance conditions. Whenever a fault occurs on a 
transmission line or generator, every time it may not be 
possible to clear fault immediately and power system 
may have to face forced generator or transmission line 
outage. In such circumstances, with changed system 
topology, stable power system operation may be possible 
at a new operating point different from that at the pre-
disturbance conditions. As the type of disturbance and its 
location is never known in advance, prediction of such 
post-disturbance topology and new reference trajectories 
is challenging. If the power system dynamics is 
represented by higher order model, then the number of 
reference trajectories will grow in proportion.  

The problem of reference trajectory formation for 
(SMIB) could be simplified by assumption of system 
having same operating power system scenario as that of 
pre-disturbance.  However, even with this assumption, 
the reference trajectory formation for (MMPS) is 
challenging because rotor angle stability concept is 
totally different in (MMPS). As compared to (SMIB), 
(MMPS) will have to satisfy the condition of maintaining 
synchronism in addition to maximum allowable rotor 
angle swing. 

For a (MMPS), the reference trajectory for rotor angle 
of every generator needs to be formed for relative rotor 
angle deviation with respect to the reference generator.  

For (MMPS), the problem size will grow with 
complexity and dimension of the power system and also 
with the lengths of prediction and control horizon. 

Since the time and location of the fault is not known a 
priory, it is challenging to find reference trajectories in a 
(MMPS) for real time controller. 

V. Handling Constraints 
Having formed the objective function and reference 

trajectory, the next important step is constraint 
formulation. 

The constraints in the form of linear inequalities could 
be on the rates of control signals and/or on the ranges of 
control signals and/or on the state variables as: 

 

퐸
∆푢(푘|푘)

⋮
∆푢(푘 + 푁 − 1|푘)

≤
0
⋮
0

 (21)

 

퐹
푢(푘|푘)

⋮
푢(푘 + 푁 − 1)

≤
0
⋮
0

 (22)

 

퐺
푧̂(푘 + 1|푘)

⋮
푧̂(푘 + 푁 |푘)

≤
0
⋮
0

 (23)

 
when optimization problem is solved, all these 
inequalities need to be translated into inequalities 
concerning ∆푈(푘 + 푖|푘). Although, it is possible to 
constrain all the state variables, only rotor angle delta is 
constrained in the present formulation, since only the 
first swing is required to be controlled. Allowable 
excursion of delta is between -150 to +150. For 푁 =5, 
controlled parameter 훿in (23) becomes: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−1

( , )
0 0 −훿

+1
( , )

0 0 −훿

0 0 −1
( , ))

−훿

0 ⋯ +1
( , )

−훿
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎢
⎡
훿 (푘 + 1|퐾)

( , )

훿 (푘 + 2|푘)
( , )

훿 (푘 + 5|푘)
( , )

1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

×

≤ [0] (24)

 
퐺

×

푔⏟
×

× 
훷⏟
×

푋(푘)
×

+ 훤⏟
×
푢(푘 − 1)

×
+ 퐺

×

∆푈(푘)
×

1
<  [0] 

(25)

 
Simplifying it further: 

 
퐺 Φ 푋(푘) + Γ푢(푘 − 1) + 퐺 퐺 Δ푈(푘) + 푔 < [0] (26)
 

Rearranging (26) as: 
 
퐺 퐺 Δ푈(푘) < −퐺 (Φ푋(푘) + Γ푢(푘 − 1) − 푔 (27)

 
In the present problem formulation, although there are 

two inputs, 푢  and 푥 , 푢  is kept inactive and 
constraints are imposed on푥 : 

 
−0.3 < 푥 < 0.4 (28)

 
The predicted control input at the next sampling 

instant is: 
 
Δ푢(푘 + 푖|푘) = 푢(푘 + 푖|푘) − 푢(푘 + 푖 − 1|푘) (29)
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which results into: 
 

푢(푘|푘) = Δ푢(푘|푘) + 푢(푘 − 1) 
푢(푘 + 1|푘) = Δ푢(푘 + 1|푘) + Δ푢(푘|푘) + 푢(푘 − 1) 

⋮ 
푢(푘 + 푁 − 1|푘) = Δ푢(푘 + 푁 − 1|푘) + ⋯+ 

+Δ푢(푘|푘) + 푢(푘 − 1) 

(30) 

 
Input changes only at time instants 푘, 푘 + 1, …which is 

acknowledged by replacing 푢(푘 + 푖|푘) by Δ푢(푘 + 푖|푘).  
Adding all the terms on Left Hand Side (LHS) of (30) 

for 푁 = 3 results into: 
 
퐿퐻푆 = 푢(푘|푘) + 푢(푘 + 1|푘) + 푢(푘 + 2|푘) (31) 

 
As discussed earlier, inequalities need to be translated 

into inequalities concerning Δ푢. Also, assuming zero 
order hold for time beyond 푁 : 

 
푢(푘 + 1|푘) = 푢(푘 + 푁 − 1), for 푁 ≤ 푖 ≤  푁 − 1 (32) 
 

Collecting proper terms Right Hand Side (RHS) of 
(30) is found to be: 

 

푅퐻푆 = 퐹 ∆푢(푘|푘) + 퐹 ∆푢(푘 + 1|푘) + 

+퐹 ∆푢(푘 + 2|푘) + 퐹 푢(푘 − 1) 

(33) 

 
In general: 
 

퐹 ∆푢(푘|푘) + 퐹 ∆푢(푘 + 1|푘) + 

+퐹 ∆푢(푘 + 푁 − 1|푘)  + 퐹 푢(푘 − 1) ≤ 0 

(34) 

 
which means that: 
 

퐹∆푈(푘) ≤ −퐹 푢(푘 − 1) − 푓 (35) 
 

For the problem at hand, with 푁 = 3, (35) becomes: 
 

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0
0 −1 0 0
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 −1⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡

∆푢 (푘|푘)
∆푥 (푘|푘)

∆푢 (푘 + 1|푘)
∆푥 (푘 + 1|푘)
∆푢 (푘 + 2|푘)
∆푥 (푘 + 2|푘)⎦

⎥
⎥
⎥
⎥
⎥
⎤

+ 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−푢 (푘 − 1) + 푢
푢 (푘 − 1) − 푢 )
−푥 (푘 − 1) + 푥
푥 (푘 − 1) − 푥
−푢 (푘 − 1) + 푢
푢 (푘 − 1) − 푢 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

≤ [0] 

(36) 

Collectively the inequalities (21), (22) and (23) are 
written as: 

 
퐹
Γ퐺
푊

Δ푈(푘) ≤  
−퐹 푢(푘 − 1) − 푓

−퐺 Φ 푋(푘) + Γ푢(푘 − 1) − 푔
푤

 (37)

 
To demonstrate the constraint handling issue, (SMIB) 

model is represented with its detailed dynamics having 
ten state variables and two control variables. 

Main objective of the present work being control of 
first swing of rotor angle delta, (TCSC) reactance is the 
only control variable that needs to be constrained. 

The additional advantage of having only one control 
variable is reduced computation burden. 

The optimization problem at hand is: 
 

min 퐽 
 
subject to: 
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(38)
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